全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Une note à propos du Jacobien de $n$ fonctions holomorphes à l'origine de $\mathbb{C}^n$

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $f_1,...,f_n$ be $n$ germs of holomorphic functions at the origin of $\mathbb{C}^n$ such that $f_i(0)=0$, $1\leq i\leq n$. We give a proof based on the J. Lipman's theory of residues via Hochschild Homology that the Jacobian of $f_1,...,f_n$ belongs to the ideal generated by $f_1,...,f_n$ belongs to the ideal generated by $f_1,...,f_n$ if and only if the dimension ot the germ of common zeos of $f_1,...,f_n$ is sttrictly positive. In fact we prove much more general results which are relatives versions of this result replacing the field $\mathbb{C}$ by convenient noetherian rings $\mathbf{A}$ (c.f. Th. 3.1 and Th. 3.3). We then show a \L ojasiewicz inequality for the jacobian analogous to the classical one by S. \L ojasiewicz for the gradient.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133