%0 Journal Article %T Une note ид propos du Jacobien de $n$ fonctions holomorphes ид l'origine de $\mathbb{C}^n$ %A Michel Hickel %J Mathematics %D 2008 %I arXiv %X Let $f_1,...,f_n$ be $n$ germs of holomorphic functions at the origin of $\mathbb{C}^n$ such that $f_i(0)=0$, $1\leq i\leq n$. We give a proof based on the J. Lipman's theory of residues via Hochschild Homology that the Jacobian of $f_1,...,f_n$ belongs to the ideal generated by $f_1,...,f_n$ belongs to the ideal generated by $f_1,...,f_n$ if and only if the dimension ot the germ of common zeos of $f_1,...,f_n$ is sttrictly positive. In fact we prove much more general results which are relatives versions of this result replacing the field $\mathbb{C}$ by convenient noetherian rings $\mathbf{A}$ (c.f. Th. 3.1 and Th. 3.3). We then show a \L ojasiewicz inequality for the jacobian analogous to the classical one by S. \L ojasiewicz for the gradient. %U http://arxiv.org/abs/0802.0426v1