全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1999 

The Moduli of Flat U(p,1) Structures on Riemann Surfaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a compact Riemann surface $X$ of genus $g > 1$, $\Hom(\pi_1(X), U(p,1))/U(p,1)$ is the moduli space of flat $\U(p,1)$-connections on $X$. There is an integer invariant, $\tau$, the Toledo invariant associated with each element in $\Hom(\pi_1(X), U(p,1))/U(p,1)$. If $q = 1$, then $-2(g-1) \le \tau \le 2(g-1)$. This paper shows that $\Hom(\pi_1(X), U(p,1))/U(p,1)$ has one connected component corresponding to each $\tau \in 2Z$ with $-2(g-1) \le \tau \le 2(g-1)$. Therefore the total number of connected components is $2(g-1) + 1$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133