全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Hamiltonian circle action with self-indexing moment map

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $(M,\omega)$ be a $2n$-dimensional smooth compact symplectic manifold equipped with a Hamiltonian circle action with only isolated fixed points and let $\mu : M \rightarrow \R$ be a corresponding moment map. Let $\Lambda_{2k}$ be the set of all fixed points of index $2k$. In this paper, we will show that if $\mu$ is constant on $\Lambda_{2k}$ for each $k$, then $(M,\omega)$ satisfies the hard Lefschetz property. In particular, if $(M,\omega)$ admits a self-indexing moment map, i.e. $\mu(p) = 2k$ for every $p \in \Lambda_{2k}$ and $k=0,1,\cdots,n,$ then $(M,\omega)$ satisfies the hard Lefschetz property.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133