%0 Journal Article %T Hamiltonian circle action with self-indexing moment map %A Yunhyung Cho %A Min Kyu Kim %J Mathematics %D 2013 %I arXiv %X Let $(M,\omega)$ be a $2n$-dimensional smooth compact symplectic manifold equipped with a Hamiltonian circle action with only isolated fixed points and let $\mu : M \rightarrow \R$ be a corresponding moment map. Let $\Lambda_{2k}$ be the set of all fixed points of index $2k$. In this paper, we will show that if $\mu$ is constant on $\Lambda_{2k}$ for each $k$, then $(M,\omega)$ satisfies the hard Lefschetz property. In particular, if $(M,\omega)$ admits a self-indexing moment map, i.e. $\mu(p) = 2k$ for every $p \in \Lambda_{2k}$ and $k=0,1,\cdots,n,$ then $(M,\omega)$ satisfies the hard Lefschetz property. %U http://arxiv.org/abs/1312.6512v1