全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Exterior mass estimates and $L^2$ restriction bounds for Neumann data along hypersurfaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the problem of estimating the $L^2$ norm of Laplace eigenfunctions on a compact Riemannian manifold $M$ when restricted to a hypersurface $H$. We prove mass estimates for the restrictions of eigenfunctions $\phi_h$, $(h^2 \Delta - 1)\phi_h = 0$, to $H$ in the region exterior to the coball bundle of $H$, on $h^{\delta}$-scales ($0\leq \delta < 2/3$). We use this estimate to obtain an $O(1)$ $L^2$-restriction bound for the Neumann data along $H.$ The estimate also applies to eigenfunctions of semiclassical Schr\"odinger operators.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133