%0 Journal Article %T Exterior mass estimates and $L^2$ restriction bounds for Neumann data along hypersurfaces %A Hans Christianson %A Andrew Hassell %A John A. Toth %J Mathematics %D 2013 %I arXiv %X We study the problem of estimating the $L^2$ norm of Laplace eigenfunctions on a compact Riemannian manifold $M$ when restricted to a hypersurface $H$. We prove mass estimates for the restrictions of eigenfunctions $\phi_h$, $(h^2 \Delta - 1)\phi_h = 0$, to $H$ in the region exterior to the coball bundle of $H$, on $h^{\delta}$-scales ($0\leq \delta < 2/3$). We use this estimate to obtain an $O(1)$ $L^2$-restriction bound for the Neumann data along $H.$ The estimate also applies to eigenfunctions of semiclassical Schr\"odinger operators. %U http://arxiv.org/abs/1303.4319v3