全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Real Elements in Spin Groups

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $F$ be a field of characteristic $\neq 2$. Let $G$ be an algebraic group defined over $F$. An element $t\in G(F)$ is called {\bf real} if there exists $s\in G(F)$ such that $sts^{-1}=t^{-1}$. A semisimple element $t$ in $GL_n(F), SL_n(F), O(q), SO(q), Sp(2n)$ and the groups of type $G_2$ over $F$ is real if and only if $t=\tau_1\tau_2$ where $\tau_1^2=\pm 1=\tau_2^2$ (ref. \cite{st1,st2}). In this paper we extend this result to the semisimple elements in $Spin$ groups when $\dim(V)\equiv 0,1,2 \imod 4$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133