%0 Journal Article %T Real Elements in Spin Groups %A Anupam Singh %J Mathematics %D 2008 %I arXiv %X Let $F$ be a field of characteristic $\neq 2$. Let $G$ be an algebraic group defined over $F$. An element $t\in G(F)$ is called {\bf real} if there exists $s\in G(F)$ such that $sts^{-1}=t^{-1}$. A semisimple element $t$ in $GL_n(F), SL_n(F), O(q), SO(q), Sp(2n)$ and the groups of type $G_2$ over $F$ is real if and only if $t=\tau_1\tau_2$ where $\tau_1^2=\pm 1=\tau_2^2$ (ref. \cite{st1,st2}). In this paper we extend this result to the semisimple elements in $Spin$ groups when $\dim(V)\equiv 0,1,2 \imod 4$. %U http://arxiv.org/abs/0804.1235v1