全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

On the derivative of the Minkowski question mark function $?(x)$

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $ x = [0;a_1,a_2,...]$ be the decomposition of the irrational number $x \in [0,1]$ into regular continued fraction. Then for the derivative of the Minkowski function $?(x)$ we prove that $?'(x) = +\infty$ provided $ \limsup_{t\to \infty}\frac{a_1+...+a_t}{t} <\kappa_1 =\frac{2\log \lambda_1}{\log 2} = 1.388^+$, and $?'(x) = 0$ provided $ \liminf_{t\to \infty}\frac{a_1+...+a_t}{t} >\kappa_2 = \frac{4L_5-5L_4}{L_5-L_4}= 4.401^+$ (here $ L_j = \log (\frac{j+\sqrt{j^2+4}}{2}) - j\cdot\frac{\log 2}{2}$). Constants $\kappa_1,\kappa_2$ are the best possible. Also we prove that $?'(x) = +\infty$ holds for all $x$ with partial quotients bounded by 4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133