%0 Journal Article %T On the derivative of the Minkowski question mark function $?(x)$ %A Anna A. Dushistova %A Nikolai G. Moshchevitin %J Mathematics %D 2007 %I arXiv %X Let $ x = [0;a_1,a_2,...]$ be the decomposition of the irrational number $x \in [0,1]$ into regular continued fraction. Then for the derivative of the Minkowski function $?(x)$ we prove that $?'(x) = +\infty$ provided $ \limsup_{t\to \infty}\frac{a_1+...+a_t}{t} <\kappa_1 =\frac{2\log \lambda_1}{\log 2} = 1.388^+$, and $?'(x) = 0$ provided $ \liminf_{t\to \infty}\frac{a_1+...+a_t}{t} >\kappa_2 = \frac{4L_5-5L_4}{L_5-L_4}= 4.401^+$ (here $ L_j = \log (\frac{j+\sqrt{j^2+4}}{2}) - j\cdot\frac{\log 2}{2}$). Constants $\kappa_1,\kappa_2$ are the best possible. Also we prove that $?'(x) = +\infty$ holds for all $x$ with partial quotients bounded by 4. %U http://arxiv.org/abs/0706.2219v2