全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Dahlberg's bilinear estimate for solutions of divergence form complex elliptic equations

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider divergence form elliptic operators $L=-\dv A(x)\nabla$, defined in $\mathbb{R}^{n+1}=\{(x,t)\in\mathbb{R}^{n}\times\mathbb{R}\}, n \geq 2$, where the $L^{\infty}$ coefficient matrix $A$ is $(n+1)\times(n+1)$, uniformly elliptic, complex and $t$-independent. Using recently obtained results concerning the boundedness and invertibility of layer potentials associated to such operators, we show that if $Lu=0$ in $\mathbb{R}^{n+1}_+$, then for any vector-valued ${\bf v} \in W^{1,2}_{loc},$ we have the bilinear estimate $$|\iint_{\mathbb{R}^{n+1}_+} \nabla u \cdot \bar{{\bf v}} dx dt |\leq C\sup_{t>0} \|u(\cdot,t)\|_{L^2(\mathbb{R}^n)}(\||t \nabla {\bf v}\|| + \|N_*{\bf v}\|_{L^2(\mathbb{R}^n)}),$$ where $\||F\|| \equiv (\iint_{\mathbb{R}^{n+1}_+} |F(x,t)|^2 t^{-1} dx dt)^{1/2},$ and where $N_*$ is the usual non-tangential maximal operator. The result is new even in the case of real symmetric coefficients, and generalizes the analogous result of Dahlberg for harmonic functions on Lipschitz graph domains.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133