%0 Journal Article %T Dahlberg's bilinear estimate for solutions of divergence form complex elliptic equations %A S. Hofmann %J Mathematics %D 2007 %I arXiv %X We consider divergence form elliptic operators $L=-\dv A(x)\nabla$, defined in $\mathbb{R}^{n+1}=\{(x,t)\in\mathbb{R}^{n}\times\mathbb{R}\}, n \geq 2$, where the $L^{\infty}$ coefficient matrix $A$ is $(n+1)\times(n+1)$, uniformly elliptic, complex and $t$-independent. Using recently obtained results concerning the boundedness and invertibility of layer potentials associated to such operators, we show that if $Lu=0$ in $\mathbb{R}^{n+1}_+$, then for any vector-valued ${\bf v} \in W^{1,2}_{loc},$ we have the bilinear estimate $$|\iint_{\mathbb{R}^{n+1}_+} \nabla u \cdot \bar{{\bf v}} dx dt |\leq C\sup_{t>0} \|u(\cdot,t)\|_{L^2(\mathbb{R}^n)}(\||t \nabla {\bf v}\|| + \|N_*{\bf v}\|_{L^2(\mathbb{R}^n)}),$$ where $\||F\|| \equiv (\iint_{\mathbb{R}^{n+1}_+} |F(x,t)|^2 t^{-1} dx dt)^{1/2},$ and where $N_*$ is the usual non-tangential maximal operator. The result is new even in the case of real symmetric coefficients, and generalizes the analogous result of Dahlberg for harmonic functions on Lipschitz graph domains. %U http://arxiv.org/abs/0705.0839v1