全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2000 

Algebraic measures of entanglement

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the rank of a general tensor $u$ in a tensor product $H_1\ot...\ot H_k$. The rank of $u$ is the minimal number $p$ of pure states $v_1,...,v_p$ such that $u$ is a linear combination of the $v_j$'s. This rank is an algebraic measure of the degree of entanglement of $u$. Motivated by quantum computation, we completely describe the rank of an arbitrary tensor in $(\C^2)^{\ot 3}$ and give normal forms for tensor states up to local unitary transformations. We also obtain partial results for $(\C^2)^{\ot 4}$; in particular, we show that the maximal rank of a tensor in $(\C^2)^{\ot 4}$ is equal to 4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133