%0 Journal Article %T Algebraic measures of entanglement %A Jean-Luc Brylinski %J Physics %D 2000 %I arXiv %X We study the rank of a general tensor $u$ in a tensor product $H_1\ot...\ot H_k$. The rank of $u$ is the minimal number $p$ of pure states $v_1,...,v_p$ such that $u$ is a linear combination of the $v_j$'s. This rank is an algebraic measure of the degree of entanglement of $u$. Motivated by quantum computation, we completely describe the rank of an arbitrary tensor in $(\C^2)^{\ot 3}$ and give normal forms for tensor states up to local unitary transformations. We also obtain partial results for $(\C^2)^{\ot 4}$; in particular, we show that the maximal rank of a tensor in $(\C^2)^{\ot 4}$ is equal to 4. %U http://arxiv.org/abs/quant-ph/0008031v1