An original neural mass model of a cortical region has been used to investigate the origin of EEG rhythms. The model consists of four interconnected neural populations: pyramidal cells, excitatory interneurons and inhibitory interneurons with slow and fast synaptic kinetics, and respectively. A new aspect, not present in previous versions, consists in the inclusion of a self-loop among interneurons. The connectivity parameters among neural populations have been changed in order to reproduce different EEG rhythms. Moreover, two cortical regions have been connected by using different typologies of long range connections. Results show that the model of a single cortical region is able to simulate the occurrence of multiple power spectral density (PSD) peaks; in particular the new inhibitory loop seems to have a critical role in the activation in gamma ( ) band, in agreement with experimental studies. Moreover the effect of different kinds of connections between two regions has been investigated, suggesting that long range connections toward interneurons have a major impact than connections toward pyramidal cells. The model can be of value to gain a deeper insight into mechanisms involved in the generation of rhythms and to provide better understanding of cortical EEG spectra. 1. Introduction Neuronal activity in the band has been proposed as a physiological indicator of perceptual and higher cognitive processes in the brain, including arousal and attention [1], binding of stimulus features and perception of objects [2], consciousness, and language [3]. Generally, rhythms are found in EEG spectra together with other rhythms, such as locally generated activity in the beta band or thalamocortical activity in the alpha band. In this context, mathematical models can be of the greatest value to gain a deeper insight into the mechanisms involved in the generation of rhythms and to provide better understanding of cortical EEG spectra. Models in fact can mimic electrical activity of groups of neurons, taking into account different patterns of connectivity, and simulate brain electrical activity in regions of interest. In recent years many authors used neural mass models to study the generation of EEG rhythms. In these models the dynamics of entire cortical regions is generally represented with a few state variables, which mimic the interaction among excitatory and inhibitory populations, arranged in a feedback loop. In particular, neural mass-models of cortical columns, particularly useful to simulate some aspects of EEG signals, were developed by Lopes da Silva et
References
[1]
M. Steriade, D. A. McCormick, and T. J. Sejnowski, “Thalamocortical oscillations in the sleeping and aroused brain,” Science, vol. 262, no. 5134, pp. 679–685, 1993.
[2]
R. Eckhorn, R. Bauer, W. Jordan, et al., “Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat,” Biological Cybernetics, vol. 60, no. 2, pp. 121–130, 1988.
[3]
F. Pulvermüller, H. Preissl, W. Lutzenberger, and N. Birbaumer, “Brain rhythms of language: nouns versus verbs,” European Journal of Neuroscience, vol. 8, no. 5, pp. 937–941, 1996.
[4]
F. H. Lopes da Silva, A. van Rotterdam, P. Barts, E. van Heusden, and W. Burr, “Models of neuronal populations: the basic mechanisms of rhythmicity,” Progress in Brain Research, vol. 45, pp. 281–308, 1976.
[5]
W. J. Freeman, “Models of the dynamics of neural populations,” Electroencephalography and Clinical Neurophysiology, no. 34, pp. 9–18, 1978.
[6]
B. H. Jansen and V. G. Rit, “Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns,” Biological Cybernetics, vol. 73, no. 4, pp. 357–366, 1995.
[7]
F. Wendling, F. Bartolomei, J. J. Bellanger, and P. Chauvel, “Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition,” European Journal of Neuroscience, vol. 15, no. 9, pp. 1499–1508, 2002.
[8]
M. Zavaglia, L. Astolfi, F. Babiloni, and M. Ursino, “A neural mass model for the simulation of cortical activity estimated from high resolution EEG during cognitive or motor tasks,” Journal of Neuroscience Methods, vol. 157, no. 2, pp. 317–329, 2006.
[9]
J. A. White, M. I. Banks, R. A. Pearce, and N. J. Kopell, “Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABA(A)) kinetics provide substrate for mixed gamma-theta rhythm,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 14, pp. 8128–8133, 2000.
[10]
M. A. Whittington, R. D. Traub, and J. G. R. Jefferys, “Synchronized oscillation in interneuron networks driven by metabotropic glutamate receptor activation,” Nature, vol. 373, no. 6515, pp. 612–615, 1995.
[11]
M. Zavaglia, L. Astolfi, F. Babiloni, and M. Ursino, “The effect of connectivity on EEG rhythms, power spectral density and coherence among coupled neural populations: analysis with a neural mass model,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp. 69–77, 2008.
[12]
M. Ursino, M. Zavaglia, L. Astolfi, and F. Babiloni, “Use of a neural mass model for the analysis of effective connectivity among cortical regions based on high resolution EEG recordings,” Biological Cybernetics, vol. 96, no. 3, pp. 351–365, 2007.