%0 Journal Article %T A Neural Mass Model to Simulate Different Rhythms in a Cortical Region %A M. Zavaglia %A F. Cona %A M. Ursino %J Computational Intelligence and Neuroscience %D 2010 %I Hindawi Publishing Corporation %R 10.1155/2010/456140 %X An original neural mass model of a cortical region has been used to investigate the origin of EEG rhythms. The model consists of four interconnected neural populations: pyramidal cells, excitatory interneurons and inhibitory interneurons with slow and fast synaptic kinetics, and respectively. A new aspect, not present in previous versions, consists in the inclusion of a self-loop among interneurons. The connectivity parameters among neural populations have been changed in order to reproduce different EEG rhythms. Moreover, two cortical regions have been connected by using different typologies of long range connections. Results show that the model of a single cortical region is able to simulate the occurrence of multiple power spectral density (PSD) peaks; in particular the new inhibitory loop seems to have a critical role in the activation in gamma ( ) band, in agreement with experimental studies. Moreover the effect of different kinds of connections between two regions has been investigated, suggesting that long range connections toward interneurons have a major impact than connections toward pyramidal cells. The model can be of value to gain a deeper insight into mechanisms involved in the generation of rhythms and to provide better understanding of cortical EEG spectra. 1. Introduction Neuronal activity in the band has been proposed as a physiological indicator of perceptual and higher cognitive processes in the brain, including arousal and attention [1], binding of stimulus features and perception of objects [2], consciousness, and language [3]. Generally, rhythms are found in EEG spectra together with other rhythms, such as locally generated activity in the beta band or thalamocortical activity in the alpha band. In this context, mathematical models can be of the greatest value to gain a deeper insight into the mechanisms involved in the generation of rhythms and to provide better understanding of cortical EEG spectra. Models in fact can mimic electrical activity of groups of neurons, taking into account different patterns of connectivity, and simulate brain electrical activity in regions of interest. In recent years many authors used neural mass models to study the generation of EEG rhythms. In these models the dynamics of entire cortical regions is generally represented with a few state variables, which mimic the interaction among excitatory and inhibitory populations, arranged in a feedback loop. In particular, neural mass-models of cortical columns, particularly useful to simulate some aspects of EEG signals, were developed by Lopes da Silva et %U http://www.hindawi.com/journals/cin/2010/456140/