A neural network model of object semantic representation is used to simulate learning of new words from a foreign language. The network consists of feature areas, devoted to description of object properties, and a lexical area, devoted to words representation. Neurons in the feature areas are implemented as Wilson-Cowan oscillators, to allow segmentation of different simultaneous objects via gamma-band synchronization. Excitatory synapses among neurons in the feature and lexical areas are learned, during a training phase, via a Hebbian rule. In this work, we first assume that some words in the first language (L1) and the corresponding object representations are initially learned during a preliminary training phase. Subsequently, second-language (L2) words are learned by simultaneously presenting the new word together with the L1 one. A competitive mechanism between the two words is also implemented by the use of inhibitory interneurons. Simulations show that, after a weak training, the L2 word allows retrieval of the object properties but requires engagement of the first language. Conversely, after a prolonged training, the L2 word becomes able to retrieve object per se. In this case, a conflict between words can occur, requiring a higher-level decision mechanism. 1. Introduction The term semantic memory is commonly used to denote a kind of declarative memory which is independent of the context as well as culturally shared and involves words and concepts. Several theories of semantic memory have been developed in the past decades, with the aim of understanding how words are linked with object representation, and how this link is altered in pathological subjects with neurological deficits. In most of these theories, semantic memory is considered a distributed process, which involves many different cortical areas and adopts a multimodal (sensory-motor) representation of objects [1–4]. More specifically, in these theories an object is usually represented as a collection of features spreading across different sensory and motor modalities, which must be linked together and with the corresponding words. Hence, retrieval of objects from memory requires that all these distributed representations, and the corresponding words, be activated all together starting from sensory or lexical cues, and integrated to form a single coherent percept. Synchronization in the gamma band is nowadays assumed to play an essential role in high-level cognitive processes. Recent results suggest that gamma rhythms are involved in high-level object memorization and retrieval [5], and
References
[1]
E. K. Warrington and T. Shallice, “Category specific semantic impairments,” Brain, vol. 107, no. 3, pp. 829–853, 1984.
[2]
A. Caramazza and J. R. Shelton, “Domain-specific knowledge systems in the brain: the animate-inanimate distinction,” Journal of Cognitive Neuroscience, vol. 10, no. 1, pp. 1–34, 1998.
[3]
G. W. Humphreys and E. M. E. Forde, “Hierarchies, similarity, and interactivity in object recognition: “Category-specific” neuropsychological deficits,” Behavioral and Brain Sciences, vol. 24, no. 3, pp. 453–509, 2001.
[4]
M. A. Kraut, S. Kremen, J. B. Segal, V. Calhoun, L. R. Moo, and J. Hart Jr., “Object activation from features in the semantic system,” Journal of Cognitive Neuroscience, vol. 14, no. 1, pp. 24–36, 2002.
[5]
C. Tallon-Baudry and O. Bertrand, “Oscillatory gamma activity in humans and its role in object representation,” Trends in Cognitive Sciences, vol. 3, no. 4, pp. 151–162, 1999.
[6]
J. González, A. Barros-Loscertales, F. Pulvermüller, et al., “Reading cinnamon activates olfactory brain regions,” NeuroImage, vol. 32, no. 2, pp. 906–912, 2006.
[7]
M. Ursino, E. Magosso, G.-E. La Cara, and C. Cuppini, “Object segmentation and recovery via neural oscillators implementing the similarity and prior knowledge gestalt rules,” BioSystems, vol. 85, no. 3, pp. 201–218, 2006.
[8]
M. Ursino, E. Magosso, and C. Cuppini, “Recognition of abstract objects via neural oscillators: interaction among topological organization, associative memory and gamma band synchronization,” IEEE Transactions on Neural Networks, vol. 20, no. 2, pp. 316–335, 2009.
[9]
C. Cuppini, E. Magosso, and M. Ursino, “A neural network model of semantic memory linking feature-based object representation and words,” BioSystems, vol. 96, no. 3, pp. 195–205, 2009.
[10]
H. R. Wilson and J. D. Cowan, “Excitatory and inhibitory interactions in localized populations of model neurons,” Biophysical Journal, vol. 12, no. 1, pp. 1–24, 1972.
[11]
S. Campbell and D. Wang, “Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators,” IEEE Transactions on Neural Networks, vol. 7, no. 3, pp. 541–554, 1996.
[12]
J. Abutalebi, “Neural aspects of second language representation and language control,” Acta Psychologica, vol. 128, no. 3, pp. 466–478, 2008.
[13]
D. Perani and J. Abutalebi, “The neural basis of first and second language processing,” Current Opinion in Neurobiology, vol. 15, no. 2, pp. 202–206, 2005.
[14]
R. Scoresby-Jackson, “Case of aphasia with right hemiplegia,” Edinburgh Medical Journal, vol. 12, pp. 696–706, 1867.
[15]
M. T. Ullman, “A neurocognitive perspective on language: the declarative/procedural model,” Nature Reviews Neuroscience, vol. 2, no. 10, pp. 717–726, 2001.
[16]
R. S. Briellmann, M. M. Saling, A. B. Connell, A. B. Waites, D. F. Abbott, and G. D. Jackson, “A high-field functional MRI study of quadri-lingual subjects,” Brain and Language, vol. 89, no. 3, pp. 531–542, 2004.
[17]
K. L. Sakai, K. Miura, N. Narafu, and Y. Muraishi, “Correlated functional changes of the prefrontal cortex in twins induced by classroom education of second language,” Cerebral Cortex, vol. 14, no. 11, pp. 1233–1239, 2004.
[18]
J. F. Kroll and E. Stewart, “Category interference in translation and picture naming: evidence for asymmetric connections between bilingual memory representations,” Journal of Memory and Language, vol. 33, no. 2, pp. 149–174, 1994.
[19]
R. De Bleser, P. Dupont, J. Postler, et al., “The organisation of the bilingual lexicon: a PET study,” Journal of Neurolinguistics, vol. 16, no. 4-5, pp. 439–456, 2003.
[20]
D. W. Green, “The neural basis of the lexicon and the grammar in L2 acquisition,” in The Interface between Syntax and the Lexicon in Second Language Acquisition, R. van Hout, A. Hulk, F. Kuiken, and R. Towell, Eds., John Benjamins, Amsterdam, The Netherlands, 2003.
[21]
D. Klein, B. Milner, R. J. Zatorre, V. Zhao, and J. Nikelski, “Cerebral organization in bilinguals: a PET study of Chinese-English verb generation,” NeuroReport, vol. 10, no. 13, pp. 2841–2846, 1999.
[22]
D. Perani, J. Abutalebi, E. Paulesu, et al., “The role of age of acquisition and language usage in early, high-proficient bilinguals: a fMRI study during verbal fluency,” Human Brain Mapping, vol. 19, no. 3, pp. 170–182, 2003.
[23]
D. W. Green, “Mental control of the bilingual lexico-semantic system,” Bilingualism: Language and Cognition, vol. 1, pp. 67–81, 1998.
[24]
A. Rodriguez-Fornells, A. van der Lugt, M. Rotte, B. Britti, H.-J. Heinze, and T. F. Münte, “Second language interferes with word production in fluent bilinguals: brain potential and functional imaging evidence,” Journal of Cognitive Neuroscience, vol. 17, no. 3, pp. 422–433, 2005.
[25]
J. Abutalebi and D. Green, “Bilingual language production: the neurocognition of language representation and control,” Journal of Neurolinguistics, vol. 20, no. 3, pp. 242–275, 2007.
[26]
Y. Wang, G. Xue, C. Chen, F. Xue, and Q. Dong, “Neural bases of asymmetric language switching in second-language learners: an ER-fMRI study,” NeuroImage, vol. 35, no. 2, pp. 862–870, 2007.
[27]
C. J. Price, D. W. Green, and R. von Studnitz, “A functional imaging study of translation and language switching,” Brain, vol. 122, no. 12, pp. 2221–2235, 1999.