%0 Journal Article %T A Semantic Model to Study Neural Organization of Language in Bilingualism %A M. Ursino %A C. Cuppini %A E. Magosso %J Computational Intelligence and Neuroscience %D 2010 %I Hindawi Publishing Corporation %R 10.1155/2010/350269 %X A neural network model of object semantic representation is used to simulate learning of new words from a foreign language. The network consists of feature areas, devoted to description of object properties, and a lexical area, devoted to words representation. Neurons in the feature areas are implemented as Wilson-Cowan oscillators, to allow segmentation of different simultaneous objects via gamma-band synchronization. Excitatory synapses among neurons in the feature and lexical areas are learned, during a training phase, via a Hebbian rule. In this work, we first assume that some words in the first language (L1) and the corresponding object representations are initially learned during a preliminary training phase. Subsequently, second-language (L2) words are learned by simultaneously presenting the new word together with the L1 one. A competitive mechanism between the two words is also implemented by the use of inhibitory interneurons. Simulations show that, after a weak training, the L2 word allows retrieval of the object properties but requires engagement of the first language. Conversely, after a prolonged training, the L2 word becomes able to retrieve object per se. In this case, a conflict between words can occur, requiring a higher-level decision mechanism. 1. Introduction The term semantic memory is commonly used to denote a kind of declarative memory which is independent of the context as well as culturally shared and involves words and concepts. Several theories of semantic memory have been developed in the past decades, with the aim of understanding how words are linked with object representation, and how this link is altered in pathological subjects with neurological deficits. In most of these theories, semantic memory is considered a distributed process, which involves many different cortical areas and adopts a multimodal (sensory-motor) representation of objects [1¨C4]. More specifically, in these theories an object is usually represented as a collection of features spreading across different sensory and motor modalities, which must be linked together and with the corresponding words. Hence, retrieval of objects from memory requires that all these distributed representations, and the corresponding words, be activated all together starting from sensory or lexical cues, and integrated to form a single coherent percept. Synchronization in the gamma band is nowadays assumed to play an essential role in high-level cognitive processes. Recent results suggest that gamma rhythms are involved in high-level object memorization and retrieval [5], and %U http://www.hindawi.com/journals/cin/2010/350269/