全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spike Sorting of Muscle Spindle Afferent Nerve Activity Recorded with Thin-Film Intrafascicular Electrodes

DOI: 10.1155/2010/836346

Full-Text   Cite this paper   Add to My Lib

Abstract:

Afferent muscle spindle activity in response to passive muscle stretch was recorded in vivo using thin-film longitudinal intrafascicular electrodes. A neural spike detection and classification scheme was developed for the purpose of separating activity of primary and secondary muscle spindle afferents. The algorithm is based on the multiscale continuous wavelet transform using complex wavelets. The detection scheme outperforms the commonly used threshold detection, especially with recordings having low signal-to-noise ratio. Results of classification of units indicate that the developed classifier is able to isolate activity having linear relationship with muscle length, which is a step towards online model-based estimation of muscle length that can be used in a closed-loop functional electrical stimulation system with natural sensory feedback. 1. Introduction Functional electrical stimulation (FES) is one solution for restoring movement in paralyzed limbs. In order to correct for disturbances and unavoidable musculoskeletal modeling errors, closed-loop FES is desirable. With the advent of advanced implanted prosthetic interfaces, natural sensors are being explored as an alternative source for feedback information. By directly interfacing the peripheral nerves, it is possible to record signals from natural sensors distributed throughout the body [1–4]. Muscle spindles are one type of natural sensor. Their main function is to signal changes in the length of the muscle within which they reside [5]. Changes in the muscle length are associated with changes in the angles of the joints that the muscles cross. Therefore, their activity can be used to provide feedback information about muscle state in a closed-loop FES system [6], as these sensors remain intact and active below the level of lesion in spinal cord injured patients [7]. In a number of studies muscle spindle afferent activity was recorded using cuff electrodes to provide natural sensory feedback [1, 4, 8–10]. Despite their chronic stability and noise immunity, the use of cuff electrodes is ultimately limited by their low selectivity, which requires them to be distributed throughout the body and in close proximity to the sensory end organs targeted for use in feedback [11]. An alternative to the cuff is the longitudinal intrafascicular electrode (LIFE). It is designed to be implanted longitudinally within the peripheral nerve where it can record activity from a relatively small population of nerve fibers [12–16]. In a previous study a simple corrector controller was implemented to follow a desired

References

[1]  M. K. Haugland and J. A. Hoffer, “Slip information provided by nerve cuff signals: application in closed-loop control of functional electrical stimulation,” IEEE Transactions on Rehabilitation Engineering, vol. 2, no. 1, pp. 29–36, 1994.
[2]  J. A. Hoffer, R. B. Stein, M. K. Haugland, et al., “Neural signals for command control and feedback in functional neuromuscular stimulation: a review,” Journal of Rehabilitation Research and Development, vol. 33, no. 2, pp. 145–157, 1996.
[3]  T. Sinkj?r, “Integrating sensory nerve signal into neural prosthesis devices,” Neuromodulation, vol. 3, no. 1, pp. 35–41, 2000.
[4]  K. D. Strange and J. A. Hoffer, “Restoration of use of paralyzed limb muscles using sensory nerve signals for state control of FES-assisted walking,” IEEE Transactions on Rehabilitation Engineering, vol. 7, no. 3, pp. 289–300, 1999.
[5]  E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science, McGraw-Hill, Boston, Mass, USA, 4th edition, 2000.
[6]  K. Yoshida and K. Horch, “Closed-loop control of ankle position using muscle afferent feedback with functional neuromuscular stimulation,” IEEE Transactions on Biomedical Engineering, vol. 43, no. 2, pp. 167–176, 1996.
[7]  J. T. Mortimer, “Motor prostheses,” in Handbook of Physiology: The Nervous System, V. B. Brooks, Ed., American Physiological Society, Bethesda, Md, USA, 1981.
[8]  W. Jensen, T. Sinkj?r, and F. Sepulveda, “Improving signal reliability for on-line joint angle estimation from nerve cuff recordings of muscle afferents,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 10, no. 3, pp. 133–139, 2002.
[9]  S. Micera, W. Jensen, F. Sepulveda, R. R. Riso, and T. Sinkj?r, “Neuro-fuzzy extraction of angular information from muscle afferents for ankle control during standing in paraplegic subjects: an animal model,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 7, pp. 787–794, 2001.
[10]  R. R. Riso, F. K. Mosallaie, W. Jensen, and T. Sinkj?r, “Nerve cuff recordings of muscle afferent activity from tibial and peroneal nerves in rabbit during passive ankle motion,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 244–258, 2000.
[11]  B. Upshaw and T. Sinkj?r, “Digital signal processing algorithms for the detection of afferent nerve activity recorded from cuff electrodes,” IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 172–181, 1998.
[12]  E. Chemineau, V. Schnabel, and K. Yoshida, “A modeling study of the recording selectivity of longitudinal intrafascicular electrodes,” in Proceedings of the 9th Annual Conference of the International FES Society, Bournemouth, UK, 2004.
[13]  E. V. Goodall and K. W. Horch, “Separation of action potentials in multiunit intrafascicular recordings,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 3, pp. 289–295, 1992.
[14]  E. V. Goodall, K. W. Horch, T. G. McNaughton, and C. M. Lybbert, “Analysis of single-unit firing patterns in multi-unit intrafascicular recordings,” Medical and Biological Engineering and Computing, vol. 31, no. 3, pp. 257–267, 1993.
[15]  J. A. Malmstrom, T. G. McNaughton, and K. W. Horch, “Recording properties and biocompatibility of chronically implanted polymer-based intrafascicular electrodes,” Annals of Biomedical Engineering, vol. 26, no. 6, pp. 1055–1064, 1998.
[16]  K. Yoshida and R. B. Stein, “Characterization of signals and noise rejection with bipolar longitudinal intrafascicular electrodes,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 2, pp. 226–234, 1999.
[17]  T. Stieglitz, M. Schuettler, and K. P. Koch, “Implantable biomedical microsystems for neural prostheses,” IEEE Engineering in Medicine and Biology Magazine, vol. 24, no. 5, pp. 58–65, 2005.
[18]  M. Djilas, C. Azevedo-Coste, D. Guiraud, and K. Yoshida, “Interpretation of muscle spindle afferent nerve response to passive muscle stretch recorded with thin-film longitudinal intrafascicular electrodes,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, no. 5, pp. 445–453, 2009.
[19]  C. Azevedo and K. Yoshida, “Towards a model-based estimator of muscle length and force using muscle afferent signals for real time FES control,” in Proceedings of the International Conference on Computer as a Tool (EUROCON '05), vol. 1, pp. 44–47, Belgrade, Serbia, November 2005.
[20]  M. Djilas, C. Azevedo-Coste, D. Guiraud, and K. Yoshida, “Interpretation of muscle spindle afferent nerve response to passive muscle stretch recorded with thin-film longitudinal intrafascicular electrodes,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, no. 5, pp. 445–453, 2009.
[21]  M. S. Lewicki, “A review of methods for spike sorting: the detection and classification of neural action potentials,” Network, vol. 9, no. 4, pp. R53–R78, 1998.
[22]  D. L. Donoho, “De-noising by soft-thresholding,” IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 613–627, 1995.
[23]  A. Diedrich, W. Charoensuk, R. J. Brychta, A. C. Ertl, and R. Shiavi, “Analysis of raw microneurographic recordings based on wavelet de-noising technique and classification algorithm: wavelet analysis in microneurography,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 1, pp. 41–50, 2003.
[24]  L. Citi, J. Carpaneto, K. Yoshida, et al., “On the use of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded using intraneural electrodes,” Journal of Neuroscience Methods, vol. 172, no. 2, pp. 294–302, 2008.
[25]  R. R. Coifman and D. L. Donoho, Translation-Invariant De-Noising, Yale University and Stanford University, 1995.
[26]  K. H. Kim and S. J. Kim, “A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 8, pp. 999–1011, 2003.
[27]  M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi, Wavelets and Their Applications, ISTE, 1st edition, 2007.
[28]  J. Bourien, J. Ruel, L. Senhadji, and J. L. Puel, “Comparison of three spike detectors dedicated to single unit action potentials of the auditory nerve,” in Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1430–1433, Lyon, France, 2007.
[29]  E. V. Goodall and K. W. Horch, “Identification of single units in multi-unit recordings from peripheral nerves,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1166–1167, 1988.
[30]  E. M. Schmidt, “Computer separation of multi-unit neuroelectric data: a review,” Journal of Neuroscience Methods, vol. 12, no. 2, pp. 95–111, 1984.
[31]  E. M. Glaser, “Separation of neuronal activity by waveform analysis,” in Advances in Biomedical Engineering, vol. 1, pp. 77–136, Academic Press, New York, NY, USA, 1971.
[32]  E. M. Glaser and W. B. Marks, “On-line separation of interleaved neuronal pulse sequences,” in Data Acquisitiona and Processing in Biology and Medicine, vol. 5, pp. 137–156, 1968.
[33]  T. G. McNaughton and K. W. Horch, “Action potential classification with dual channel intrafascicular electrodes,” IEEE Transactions on Biomedical Engineering, vol. 41, no. 6, pp. 609–616, 1994.
[34]  K. Mirfakhraei and K. Horch, “Classification of action potentials in multi-unit intrafascicular recordings using neural network pattern-recognition techniques,” IEEE Transactions on Biomedical Engineering, vol. 41, no. 1, pp. 89–90, 1994.
[35]  K. Mirfakhraei and K. Horch, “Recognition of temporally changing action potentials in multiunit neural recordings,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 2, pp. 123–131, 1997.
[36]  B. L. McNaughton, J. O'Keefe, and C. A. Barnes, “The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system for multiple unit records,” Journal of Neuroscience Methods, vol. 8, no. 4, pp. 391–397, 1983.
[37]  B. Pages and U. Proske, “Effect of halothane anesthesia on responses from primary endings of muscle spindles in the cat,” Experimental Neurology, vol. 28, no. 3, pp. 393–402, 1970.
[38]  C. S. Sherrington and E. H. Hering, “On reciprocal innervation of antagonist muscles. Fourth note,” Proceedings of the Royal Society of London B, vol. 62, pp. 183–187, 1897-1898.
[39]  J. Y. Wei, J. Simon, M. Randic, and P. R. Burgess, “Joint angle signaling by muscle spindle receptors,” Brain Research, vol. 370, no. 1, pp. 108–118, 1986.
[40]  G. M. Goodwin, D. I. Mccloskey, and P. B. C. Matthews, “Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception?” Science, vol. 175, no. 4028, pp. 1382–1384, 1972.
[41]  J. K. Jansen and P. B. Matthews, “The central control of the dynamic response of muscle spindle receptors,” The Journal of Physiology, vol. 161, pp. 357–378, 1962.
[42]  A. R. Kralj and T. Bajd, Functional Electrical Stimulation: Standing and Walking after Spinal Cord Injury, CRC, Boca Raton, Fla, USA, 1st edition, 1989.
[43]  S. Demura and T. Kitabayashi, “Comparison of power spectrum characteristics of body sway during a static upright standing posture in healthy elderly people and young adults,” Perceptual and Motor Skills, vol. 102, no. 2, pp. 467–476, 2006.
[44]  S. Yoneda and K. Tokumasu, “Frequency analysis of body sway in the upright posture. Statistical study in cases of peripheral vestibular disease,” Acta Oto-Laryngologica, vol. 102, no. 1-2, pp. 87–92, 1986.
[45]  D. O. Olguín, F. B. Lara, and S. O. M. Chapa, “Adaptive notch filter for EEG signals based on the LMS algorithm with variable step-size parameter,” in Proceedings of the 39th International Conference on Information Sciences and Systems, Baltimore, Md, USA, 2005.
[46]  E. T. von Brücke, M. Early, and A. Forbes, “Recovery of responsiveness in motor and sensory fibers during the relative refractory period,” Journal of Neurophysiology, vol. 4, pp. 80–91, 1941.
[47]  P. B. Matthews and R. B. Stein, “The sensitivity of muscle spindle afferents to small sinusoidal changes of length,” Journal of Physiology, vol. 200, no. 3, pp. 723–743, 1969.
[48]  M. Djilas, K. Yoshida, M. Kurstjens, and C. Azevedo-Coste, “Improving the signal-to-noise ratio in recordings with thin-film longitudinal intrafascicular electrodes using shielding cuffs,” in Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering, Cohala Coast, Hawaii, USA, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133