Waste materials, and materials derived from wastes, possess many characteristics that can improve soil fertility and enhance crop performance. These materials can be particularly useful as amendments to severely degraded soils associated with mining activities. This study evaluated biosolids, composts, log yard wastes, and two organic soil treatments for improved soil fertility and vegetative performance using side-by-side comparisons. Each plot was seeded with a standardized seed mix and evaluated for a series of soil chemical and physical parameters, total vegetation response, species diversity, ecological plant response, and invasion indices. All treatments were successful at improving soil fertility and promoting a self-sustaining vegetative cover. The level of available nitrogen had a strong impact on vegetative coverage, species distribution, and extent of unseeded vegetation. For example, high nitrogen treatments promoted a grass-dominated (low forb) plant community with a low content of unseeded vegetation. In contrast, low nitrogen treatments promoted a more balanced plant community with a mixture of grass and forb species and greater susceptibility to unseeded vegetation establishment. 1. Introduction The use of waste materials as soil amendments has received increased attention in recent years for agronomic applications as well as soil reclamation projects. Adding these materials to soils can be viewed as serving a dual purpose: (1) for disposal of solid waste from municipalities and agricultural operations and (2) as a means to improve chemical and physical soil properties which in turn promotes improved crop performance. A variety of materials have been investigated for their suitability as soil amendments. For example, applications of composted municipal solid waste and composted crop residues were shown to increase soil fertility and improve structural stability in agricultural soils [1, 2]. Similarly, municipal biosolids have been used to improve soil chemical and physical properties in numerous studies [3–5]. Log yard fines (LYF) can increase water holding capacity and porosity [6] but have also been shown to reduce crop performance due to nitrogen immobilization [7]. For this reason, biosolids are often mixed with LYF and other wood byproducts as a means to reduce C?:?N and maintain nitrogen availability [8, 9]. Others have utilized agricultural limestone or wood ash in biosolids mixtures to reduce metal bioavailability [3, 10]. The chemical properties of the waste material can also have significant impacts on crop performance. For
References
[1]
J. Weber, A. Karczewska, J. Drozd et al., “Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts,” Soil Biology and Biochemistry, vol. 39, no. 6, pp. 1294–1302, 2007.
[2]
M. Tejada, M. T. Hernandez, and C. Garcia, “Soil restoration using composted plant residues: effects on soil properties,” Soil and Tillage Research, vol. 102, no. 1, pp. 109–117, 2009.
[3]
Y. M. Li, R. L. Chaney, G. Siebielec, and B. A. Kerschner, “Response of four turfgrass cultivars to limestone and biosolids-compost amendment of a zinc and cadmium contaminated soil at Palmerton, Pennsylvania,” Journal of Environmental Quality, vol. 29, no. 5, pp. 1440–1447, 2000.
[4]
K. Debosz, S. O. Petersen, L. K. Kure, and P. Ambus, “Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties,” Applied Soil Ecology, vol. 19, no. 3, pp. 237–248, 2002.
[5]
F. García-Orenes, C. Guerrero, J. Mataix-Solera, J. Navarro-Pedre?o, I. Gómez, and J. Mataix-Beneyto, “Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids,” Soil and Tillage Research, vol. 82, no. 1, pp. 65–76, 2005.
[6]
M. Zeng, A. G. Campbell, and R. L. Mahler, “Log yard fines as a soil amendment: pot and field studies,” Communications in Soil Science and Plant Analysis, vol. 24, no. 15-16, pp. 2025–2041, 1993.
[7]
A. G. Campbell, R. L. Folk, and R. R. Tripepi, “Amended and composted log yard fines as a growth medium for crimson clover and red top grass,” Communications in Soil Science and Plant Analysis, vol. 25, no. 13-14, pp. 2439–2454, 1994.
[8]
S. L. Brown, C. L. Henry, R. Chaney, H. Compton, and P. S. DeVolder, “Using municipal biosolids in combination with other residuals to restore metal-contaminated mining areas,” Plant and Soil, vol. 249, no. 1, pp. 203–215, 2003.
[9]
C. Bulmer, K. Venner, and C. Prescott, “Forest soil rehabilitation with tillage and wood waste enhances seedling establishment but not height after 8 years,” Canadian Journal of Forest Research, vol. 37, no. 10, pp. 1894–1906, 2007.
[10]
S. Brown, M. Sprenger, A. Maxemchuk, and H. Compton, “Ecosystem function in alluvial tailings after biosolids and lime addition,” Journal of Environmental Quality, vol. 34, no. 1, pp. 139–148, 2005.
[11]
T. D. Glanville, R. A. Persyn, T. L. Richard, J. M. Laflen, and P. M. Dixon, “Environmental effects of applying composted organics to new highway embankments: part 2. Water quality,” Transactions of the American Society of Agricultural Engineers, vol. 47, no. 2, pp. 471–478, 2004.
[12]
J. O. Mountford, K. H. Lakhani, and F. W. Kirkham, “Experimental assessment of the effects of nitrogen addition under hay-cutting and aftermath grazing on the vegetation of meadows on a Somerset peat moor,” Journal of Applied Ecology, vol. 30, no. 2, pp. 321–332, 1993.
[13]
J. P. Bakker and F. Berendse, “Constraints in the restoration of ecological diversity in grassland and heathland communities,” Trends in Ecology and Evolution, vol. 14, pp. 215–222, 1999.
[14]
S. Tandy, H. L. Wallace, D. L. Jones, M. A. Nason, J. C. Williamson, and J. R. Healey, “Can a mesotrophic grassland community be restored on a post-industrial sandy site with compost made from waste materials?” Biological Conservation, vol. 144, no. 1, pp. 500–510, 2011.
[15]
J. C. García-Gil, C. Plaza, P. Soler-Rovira, and A. Polo, “Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass,” Soil Biology and Biochemistry, vol. 32, no. 13, pp. 1907–1913, 2000.
[16]
M. Odlare, V. Arthurson, M. Pell, K. Svensson, E. Nehrenheim, and J. Abubaker, “Land application of organic waste—effects on the soil ecosystem,” Applied Energy, vol. 88, no. 6, pp. 2210–2218, 2011.
[17]
C. Crecchio, M. Curci, R. Mininni, P. Ricciuti, and P. Ruggiero, “Short-term effects of municipal solid waste compost amendments on soil carbon and nitrogen content, some enzyme activities and genetic diversity,” Biology and Fertility of Soils, vol. 34, no. 5, pp. 311–318, 2001.
[18]
A. Pérez-Piqueres, V. Edel-Hermann, C. Alabouvette, and C. Steinberg, “Response of soil microbial communities to compost amendments,” Soil Biology and Biochemistry, vol. 38, no. 3, pp. 460–470, 2006.
[19]
V. Illera, I. Walter, P. Souza, and V. Cala, “Short-term effects of biosolid and municipal solid waste applications on heavy metals distribution in a degraded soil under a semi-arid environment,” Science of the Total Environment, vol. 255, no. 1–3, pp. 29–44, 2000.
[20]
M. B. McBride, “Toxic metals in sewage sludge-amended soils: has promotion of beneficial use discounted the risks?” Advances in Environmental Research, vol. 8, no. 1, pp. 5–19, 2003.
[21]
S. R. Smith, “A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge,” Environment International, vol. 35, no. 1, pp. 142–156, 2009.
[22]
F. Martínez, M. A. Casermeiro, D. Morales, G. Cuevas, and I. Walter, “Effects on run-off water quantity and quality of urban organic wastes applied in a degraded semi-arid ecosystem,” Science of the Total Environment, vol. 305, no. 1–3, pp. 13–21, 2003.
[23]
T. K. Udeigwe, P. N. Eze, J. M. Teboh, and M. H. Stietiya, “Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality,” Environment International, vol. 37, no. 1, pp. 258–267, 2011.
[24]
V. E. Cabrera, L. J. Stavast, T. T. Baker et al., “Soil and runoff response to dairy manure application on New Mexico rangeland,” Agriculture, Ecosystems and Environment, vol. 131, no. 3-4, pp. 255–262, 2009.
[25]
R. A. Schoof and D. Houkal, “The evolving science of chemical risk assessment for land-applied biosolids,” Journal of Environmental Quality, vol. 34, no. 1, pp. 114–121, 2005.
[26]
C. E. Elzinga, D. W. Salzer, and J. W. Willoughby, “Field techniques for measuring vegetation,” in Measuring and Monitoring Plant Populations, BLM Technical Reference, 1998.
[27]
R. O. Miller, J. Kotuby-Amacher, and J. B. Rodriguez, “Western States Laboratory Proficiency Testing Program, Soil and Plant Analytical Methods,” Version 4.00, 1997.
[28]
J. R. Sims and V. A. Haby, “The colorimetric determination of soil organic matter,” Soil Science, vol. 112, pp. 137–141, 1971.
[29]
U.S. E.P.A, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, vol. SW-846, 3rd edition, 1986.
[30]
ASL, “Laboratory Quality Management Plan,” University of Idaho Analytical Sciences Laboratory, University of Idaho, Moscow, Idaho, USA, 2003.
[31]
SAS, “SAS OnlineDoc,” version 9.1.3, SAS Institute Inc., Cary, NC, USA, 2004.
[32]
S. Davis, “Regulated metals: the rule of 20,” Pollution Prevention Institute, Kansas SBEAP, Kansas State University, 2001.
[33]
R. L. Mahler, “Northern Idaho Fertilizer Guide, Legume and Legume-Grass Pastures,” CIS 851, University of Idaho Agricultural Experiment Station, 2005.
[34]
S. L. McGeehan, “Impact of available nitrogen in mine site revegetation: a case study in the Coeur d'Alene (Idaho) mining district,” Communications in Soil Science and Plant Analysis, vol. 40, no. 1–6, pp. 82–95, 2009.
[35]
D. M. Sullivan, S. C. Fransen, C. G. Cogger, and A. I. Bary, “Biosolids and dairy manure as nitrogen sources for prairiegrass on a poorly drained soil,” Journal of Production Agriculture, vol. 10, no. 4, pp. 589–596, 1997.
[36]
B. L. Miller, D. B. Parker, J. M. Sweeten, and C. Robinson, “Response of seven crops and two soils to application of beef cattle feedyard effluent,” Transactions of the American Society of Agricultural Engineers, vol. 44, no. 2, pp. 309–315, 2001.
[37]
M. B. Robinson, P. J. Polglase, and C. J. Weston, “Loss of mass and nitrogen from biosolids applied to a pine plantation,” Australian Journal of Soil Research, vol. 40, no. 6, pp. 1027–1039, 2002.
[38]
M. B. Robinson and H. R?per, “Volatilisation of nitrogen from land applied biosolids,” Australian Journal of Soil Research, vol. 41, no. 4, pp. 711–716, 2003.
[39]
C. Mendoza, N. W. Assadian, and W. Lindemann, “The fate of nitrogen in a moderately alkaline and calcareous soil amended with biosolids and urea,” Chemosphere, vol. 63, no. 11, pp. 1933–1941, 2006.
[40]
T. D. Whitson, Weeds of the West, University of Wyoming Press, 5th edition, 1999.
[41]
Z. Q. Zhang, W. S. Shu, C. Y. Lan, and M. H. Wong, “Soil seed bank as an input of seed source in revegetation of lead/zinc mine tailings,” Restoration Ecology, vol. 9, no. 4, pp. 378–385, 2001.
[42]
D. F. Polster, J. Soll, and J. Myers, “Managing northwest invasive vegetation,” in Restoring the Pacific Northwest: The Art and Science of Ecological Restoration in Cascadia, D. Apostol and M. Sinclair, Eds., Island Press, 2006.
[43]
H. L. Carlson and J. E. Hill, “Wild oat (Avena fatua) competition with spring wheat: effects of nitrogen fertilization,” Weed Science, vol. 34, pp. 29–33, 1985.
[44]
B. J?rnsg?rd, K. Rasmussen, J. Hill, and J. L. Christiansen, “Influence of nitrogen on competition between cereals and their natural weed populations,” Weed Research, vol. 36, no. 6, pp. 461–470, 1996.
[45]
S. D. Wilson and D. Tilman, “Components of plant competition along an experimental gradient of nitrogen availability,” Ecology, vol. 72, no. 3, pp. 1050–1065, 1991.
[46]
T. K. Rajaniemi, “Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses,” Journal of Ecology, vol. 90, no. 2, pp. 316–324, 2002.
[47]
P. Pysek and J. Leps, “Response of a weed community to nitrogen fertilization: a multivariate analysis,” Journal of Veterinary Science, vol. 2, pp. 237–244, 1991.