%0 Journal Article %T Impact of Waste Materials and Organic Amendments on Soil Properties and Vegetative Performance %A Steven L. McGeehan %J Applied and Environmental Soil Science %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/907831 %X Waste materials, and materials derived from wastes, possess many characteristics that can improve soil fertility and enhance crop performance. These materials can be particularly useful as amendments to severely degraded soils associated with mining activities. This study evaluated biosolids, composts, log yard wastes, and two organic soil treatments for improved soil fertility and vegetative performance using side-by-side comparisons. Each plot was seeded with a standardized seed mix and evaluated for a series of soil chemical and physical parameters, total vegetation response, species diversity, ecological plant response, and invasion indices. All treatments were successful at improving soil fertility and promoting a self-sustaining vegetative cover. The level of available nitrogen had a strong impact on vegetative coverage, species distribution, and extent of unseeded vegetation. For example, high nitrogen treatments promoted a grass-dominated (low forb) plant community with a low content of unseeded vegetation. In contrast, low nitrogen treatments promoted a more balanced plant community with a mixture of grass and forb species and greater susceptibility to unseeded vegetation establishment. 1. Introduction The use of waste materials as soil amendments has received increased attention in recent years for agronomic applications as well as soil reclamation projects. Adding these materials to soils can be viewed as serving a dual purpose: (1) for disposal of solid waste from municipalities and agricultural operations and (2) as a means to improve chemical and physical soil properties which in turn promotes improved crop performance. A variety of materials have been investigated for their suitability as soil amendments. For example, applications of composted municipal solid waste and composted crop residues were shown to increase soil fertility and improve structural stability in agricultural soils [1, 2]. Similarly, municipal biosolids have been used to improve soil chemical and physical properties in numerous studies [3¨C5]. Log yard fines (LYF) can increase water holding capacity and porosity [6] but have also been shown to reduce crop performance due to nitrogen immobilization [7]. For this reason, biosolids are often mixed with LYF and other wood byproducts as a means to reduce C£¿:£¿N and maintain nitrogen availability [8, 9]. Others have utilized agricultural limestone or wood ash in biosolids mixtures to reduce metal bioavailability [3, 10]. The chemical properties of the waste material can also have significant impacts on crop performance. For %U http://www.hindawi.com/journals/aess/2012/907831/