全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Distribution and Fate of Military Explosives and Propellants in Soil: A Review

DOI: 10.1155/2012/617236

Full-Text   Cite this paper   Add to My Lib

Abstract:

Energetic materials comprise both explosives and propellants. When released to the biosphere, energetics are xenobiotic contaminants which pose toxic hazards to ecosystems, humans, and other biota. Soils worldwide are contaminated by energetic materials from manufacturing operations; military conflict; military training activities at firing and impact ranges; and open burning/open detonation (OB/OD) of obsolete munitions. Energetic materials undergo varying degrees of chemical and biochemical transformation depending on the compounds involved and environmental factors. This paper addresses the occurrence of energetic materials in soils including a discussion of their fates after contact with soil. Emphasis is placed on the explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and the propellant ingredients nitroglycerin (NG), nitroguanidine (NQ), nitrocellulose (NC), 2,4-dinitrotoluene (2,4-DNT), and perchlorate. 1. Introduction Energetic compounds, defined as the active chemical components of explosives and propellants, are necessary both for peaceful (e.g., demolition and mining) and military purposes. Commonly used military energetic compounds include the explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) [1]. Nitroglycerin (NG), nitroguanidine (NQ), nitrocellulose (NC), 2,4-dinitrotoluene (DNT), and various perchlorate formulations are employed in missile, rocket, and gun propellants [2, 3]. The chemical structures of these compounds appear in Figure 1. Figure 1: Chemical structures of energetic compounds: (a) 2,4,6-trinitrotoluene (TNT); (b) hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX); (c) octahydro-1,3,5,7-tetranitro-1,3,5,7-terazocine (HMX); (d) nitroglycerin (NG); (e) nitroguanidine (NQ); (f) nitrocellulose (NC); (g) 2,4-dinitrotoluene (DNT); (h) the perchlorate anion. As a result of military activities and due to improper management and disposal practices many energetic substances and their by-products have contaminated environments to levels that threaten the health of humans, livestock, wildlife, and ecosystems. In humans TNT is associated with abnormal liver function and anemia, and both TNT and RDX have been classified as potential human carcinogens [4, 5]. TNT toxicity has been demonstrated using earthworm reproduction tests [6], and studies with Vibrio fischeri have established TNT as being “very toxic” to aquatic organisms [7]. Mutagenicity studies

References

[1]  S. Thiboutot, G. Ampleman, and A. Hewitt, “Guide for characterization of sites contaminated with energetic materials,” Tech. Rep. ERDC/CRREL TR-02-1, US Army Engineer Research and Development Center, Hanover, NH, USA, 2002.
[2]  T. F. Jenkins, J. C. Pennington, G. Ampleman, et al., “Characterization and fate of gun and rocket propellant residues on testing and training ranges: interim report 1,” Tech. Rep. ERDC TR-07-01, Strategic Environmental Research and Development Program, Vicksburg, Miss, USA, 2007.
[3]  J. C. Pennington, T. F. Jenkins, G. Ampleman, et al., “Distribution and fate of energetics on DOD test and training ranges: final report,” ERDC TR-06-13, US Army Corps of Engineers Engineer Research and Development Center, Vicksburg, Miss, USA, 2006.
[4]  ATSDR, “2,4,6-Trinitrotoluene (TNT) fact sheet,” 1996, http://www.atsdr.cdc.gov/tfacts78.html.
[5]  ATSDR, “RDX fact sheet,” 1996, http://www.atsdr.cdc.gov/tfacts78.html.
[6]  P. Y. Robidoux, C. Svendsen, J. Caumartin et al., “Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test,” Environmental Toxicology and Chemistry, vol. 19, no. 7, pp. 1764–1773, 2000.
[7]  O. Drzyzga, T. Gorontzy, A. Schmidt, and K. H. Blotevogel, “Toxicity of explosives and related compounds to the luminescent bacterium Vibrio fischeri NRRL-B-11177,” Archives of Environmental Contamination and Toxicology, vol. 28, no. 2, pp. 229–235, 1995.
[8]  S. E. George, G. Huggins-Clark, and L. R. Brooks, “Use of a Salmonella microsuspension bioassay to detect the mutagenicity of munitions compounds at low concentrations,” Mutation Research, vol. 490, no. 1, pp. 45–56, 2001.
[9]  B. Lachance, P. Y. Robidoux, J. Hawari, G. Ampleman, S. Thiboutot, and G. I. Sunahara, “Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro,” Mutation Research, vol. 444, no. 1, pp. 25–39, 1999.
[10]  E. L. Tan, C. H. Ho, W. H. Griest, and R. L. Tyndall, “Mutagenicity of trinitrotoluene and its metabolites formed during composting,” Journal of Toxicology and Environmental Health, vol. 36, no. 3, pp. 165–175, 1992.
[11]  W.-Z. Whong and G. S. Edwards, “Genotoxic activity of nitroaromatic explosives and related compounds in Salmonella typhimurium,” Mutation Research, vol. 136, no. 3, pp. 209–215, 1984.
[12]  L. J. Burdette, L. L. Cook, and R. S. Dyer, “Convulsant properties of cyclotrimethylenetrinitramine (RDX): spontaneous, audiogenic, and amygdaloid kindled seizure activity,” Toxicology and Applied Pharmacology, vol. 92, no. 3, pp. 436–444, 1988.
[13]  W. F. von Oettingen, D. D. Donahue, H. Y. Yagonda, A. R. Monaco, and M. R. Harris, “Toxicity and potential dangers of cyclotrimethylenetrinitramine (RDX),” Journal of Industrial Hygiene and Toxicology, vol. 31, pp. 21–31, 1949.
[14]  C. Smith-Simon and S. Goldhaber, “RDX - ATSDR toxicological profile,” Report 205-93-0606, US Department of Health and Human Services, Atlanta, Ga, USA, 1999.
[15]  A. S. Kaplan, C. F. Berghout, and A. Peczenik, “Human intoxication from RDX,” Archives of Environmental Health, vol. 10, pp. 877–883, 1965.
[16]  ATSDR, “HMX fact sheet,” 1996, http://www.atsdr.cdc.gov/tfacts98.html.
[17]  A. Crockett, H. Craig, and T. Jenkins, “Field sampling and selecting on-site analytical methods for explosives in water,” Report EPA/600/S-99/002, US Environmental Protection Agency, Washington, DC, USA, 1999.
[18]  J. C. Pennington, T. F. Jenkins, G. Ampleman, et al., “Distribution and fate of energetics on DOD test and training ranges: interim report 6,” TR 06-12, Strategic Environmental Research and Development Program, US Army Corps of Engineers Engineer Research and Development Center, Vicksburg, Miss, USA, 2006.
[19]  M. Sittig, Handbook of Toxic and Hazardous Chemicals, Noyes Publications, Park Ridge, NJ, USA, 3rd edition, 1991.
[20]  W. N. Rom, Environmental and Occupational Medicine, Little, Brown and Company, Boston, Mass, USA, 2nd edition, 1992.
[21]  OSHA, “Occupational safety and health guideline for nitroglycerin,” http://www.osha.gov/SLTC/healthguidelines/nitroglycerin/recognition.html.
[22]  ATSDR, “Toxic substances portal—perchlorates,” 2011, http://www.atsdr.cdc.gov/toxfaqs/.
[23]  E. P. H. Best, S. L. Sprecher, S. L. Larson, H. L. Fredrickson, and D. F. Bader, “Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX,” Chemosphere, vol. 38, no. 14, pp. 3383–3396, 1999.
[24]  H. R. Beller and K. Tiemeyer, “Use of liquid chromatography/tandem mass spectrometry to detect distinctive indicators of in situ RDX transformation in contaminated ground water,” Environmental Science and Technology, vol. 36, pp. 2060–2066, 2002.
[25]  R. F. Spalding and J. W. Fulton, “Groundwater munition residues and nitrate near Grand Island, Nebraska, U.S.A.,” Journal of Contaminant Hydrology, vol. 2, no. 2, pp. 139–153, 1988.
[26]  K. Spiegel, J. V. Headley, K. M. Peru, N. Haidar, and N. P. Gurprasard, “Residues of explosives in groundwater leached from soils at a military site in Eastern Germany,” Communications in Soil Science and Plant Analysis, vol. 36, no. 1–3, pp. 133–153, 2005.
[27]  R. Martel, M. Mailloux, U. Gabriel, R. Lefebvre, S. Thiboutot, and G. Ampleman, “Behavior of energetic materials in ground water at an anti-tank range,” Journal of Environmental Quality, vol. 38, no. 1, pp. 75–92, 2009.
[28]  R. Martel, T. J. Robertson, D. M. Quan et al., “2,4,6-Trinitrotoluene in soil and groundwater under a waste lagoon at the former Explosives Factory Maribyrnong (EFM), Victoria, Australia,” Environmental Geology, vol. 53, no. 6, pp. 1249–1259, 2008.
[29]  S. Hains, R. Martel, R. Lefebvre, et al., in Proceedings of the 54th Canadian Geotechnical Conference: an Earth Odyssey, pp. 16–19, Calgary, Canada, September 2001.
[30]  J. Clausen, J. Robb, D. Curry, M. Wojtas, and B. Gallagher, “Analytes of interest at military ranges,” in Proceedings of the National Defense Industry Association Annual Meeting, Arlington, Va, USA, April 2003.
[31]  D. Armstrong, “US presence on foreign soil is tainted,” Boston Globe, November 15, 1999.
[32]  D. Armstrong, “More costly cleanup on horizon,” Boston Globe, November 14, 1999.
[33]  D. Kalderis, A. L. Juhasz, R. Boopathy, and S. Comfort, “Soils contaminated with explosives: environmental fate and evaluation of state-of-the-art remediation processes (IUPAC technical report),” Pure and Applied Chemistry, vol. 83, no. 7, pp. 1407–1484, 2011.
[34]  J. Eriksson, S. Frankki, A. Shchukarev, and U. Skyllberg, “Binding of 2,4,6-trinitrotoluene, aniline, and nitrobenzene to dissolved and particulate soil organic matter,” Environmental Science and Technology, vol. 38, no. 11, pp. 3074–3080, 2004.
[35]  J. Pichtel, Terrorism and WMDs: Awareness and Response, CRC Press, Boca Raton, Fla, USA, 2011.
[36]  A. L. Juhasz and R. Naidu, “Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments,” Reviews of Environmental Contamination and Toxicology, vol. 191, pp. 163–215, 2007.
[37]  J. M. Brannon and J. C. Pennington, “Environmental fate and transport process descriptors for explosives,” ERDC/EL TR-02-10, U.S Army Engineer Research and Development Center, Vicksburg, Miss, USA, 2002.
[38]  D. C. Leggett, T. F. Jenkins, and R. P. Murrmann, “Composition of vapors evolved from military TNT as influenced by temperature, solid composition, age and source,” Special Report 77-16, Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, 1977.
[39]  T. F. Jenkins, G. Ampleman, S. Thiboutot, et al., “Characterization and fate of gun and rocket propellant residues on testing and training ranges: final report,” TR 08-01, Strategic Environmental Research and Development Program, Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center, Hanover, NH, USA, 2008.
[40]  M. E. Walsh, T. F. Jenkins, P. S. Schnitker, J. W. Elwell, and M. H. Stutz, “Evaluation of SW846 Method 8330 for characterization of sites contaminated with residues of high explosives,” CRREL Report 93-5, US Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, 1993.
[41]  US EPA, Contaminated Site Clean-Up Information, Technology Innovation and Field Services Division, US Environmental Protection Agency, Washington, DC, USA, 2010.
[42]  Global Security, “Explosives—nitroaromatics,” 2008, http://www.globalsecurity.org/military/systems/munitions/explosives-nitroaromatics.htm.
[43]  J. Hawari, “Biodegradation of RDX and HMX: from basic research to field application,” in Biodegradation of Nitroaromatic Compounds and Explosives, pp. 277–310, Plenum Press, New York, NY, USA, 2000.
[44]  H. Ullah, A. A. Shah, F. Hasan, and A. Hameed, “Biodegradation of trinitrotoluene by immobilized Bacillus Sp. Yre1,” Pakistan Journal of Botany, vol. 42, no. 5, pp. 3357–3367, 2010.
[45]  J. Yinon, Toxicity and Metabolism of Explosives, CRC Press, Boca Raton, Fla, USA, 1990.
[46]  J. H. Sullivan, H. D. Puttman, M. A. Keirn, B. C. Pruitt, J. C. Nichols, and J. T. McClave, A Summary and Evaluation of Aquatic Environmental Data in Relation to Establishing Water Quality Criteria for Munitions Unique Compounds: Part 2. Nitroglycerin, Water and Air Research, US Army Medical Research and Development Command, Gainesville, Fla, USA, 1979.
[47]  R. Boopathy, “Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition,” Bioresource Technology, vol. 76, pp. 241–244, 2001.
[48]  F. Monteil-Rivera, L. Paquet, S. Deschamps, V. K. Balakrishnan, C. Beaulieu, and J. Hawari, “Physico-chemical measurements of CL-20 for environmental applications: comparison with RDX and HMX,” Journal of Chromatography, vol. 1025, pp. 125–132, 2004.
[49]  M. R. Walsh, M. E. Walsh, A. D. Hewitt, and C. M. Collins, “Field-expedient disposal of excess artillery propellants,” in Proceedings of the SERDP & ESTCP's Partners in Environmental Technology Technical Symposium & Workshop, Washingto, DC, USA, December 2008.
[50]  National Forensic Science Technology Center, “Propellants,” Firearm Examiner Training, 2011, http://projects.nfstc.org/firearms/module05/fir_m05_t04_01.htm.
[51]  D. H. Rosenblatt, E. P. Burrows, W. R. Mitchell, and D. L. Palmer, “Organic explosives and related compounds,” in The Handbook of Environmental Chemistry, O. Hutziner, Ed., vol. 3, pp. 195–234, Springer, Berlin, Germany, 1989.
[52]  D. C. Leggett, T. F. Jenkins, and R. P. Murrmann, “Composition of vapors evolved from military TNT as influenced by temperature, solid composition, age and source,” Special Report 77-16, Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, 1977.
[53]  Fisher Scientific, “Material Safety Data Sheet, Nitroguanidine, 99%, Moistened With ca 25% Water,” 2008, https://fscimage.fishersci.com/msds/07334.htm.
[54]  G. Bordeleau, R. Martel, G. Ampleman, and S. Thiboutot, “Environmental impacts of training activities at an air weapons range,” Journal of Environmental Quality, vol. 37, pp. 308–317, 2008.
[55]  ATSDR, Toxicological Profile for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene, US Public Health Service, US Department of Health and Human Services, Atlanta, Ga, USA, 1989.
[56]  Code of Federal Regulations (CFR), Appendix A to Part 423-126 Priority Pollutants, Title 40-Protection of Environment, http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&tpl=%2Findex.tpl.
[57]  K. A. Thorn, J. C. Pennington, K. R. Kennedy, L. G. Cox, C. A. Hayes, and B. E. Porter, “N-15 NMR study of the immobilization of 2,4- and 2,6-dinitrotoluene in aerobic compost,” Environmental Science and Technology, vol. 42, pp. 2542–2550, 2008.
[58]  M. Uchimiya, “Reductive transformation of 2,4-dinitrotoluene: roles of iron and natural organic matter,” Aquatic Geochemistry, vol. 16, pp. 547–562, 2010.
[59]  E. T. Urbansky, “Perchlorate chemistry: implications for analysis and remediation,” Bioremediation, vol. 2, pp. 81–95, 1998.
[60]  R. Q. Gullick, M. W. Lechvallier, and T. A. S. Barhorst, “Occurrence of perchlorate in drinking water sources,” Journal of the American Water Works Association, vol. 39, pp. 66–77, 2001.
[61]  B. E. Logan, “Assessing the outlook for perchlorate remediation,” Environmental Science and Technology, vol. 35, pp. 482A–487A, 2001.
[62]  W. E. Motzer, “Perchlorate: problems, detection, and solutions,” Environmental Forensics, vol. 2, pp. 301–311, 2001.
[63]  C. W. Trumpolt, M. Crain, C. D. Cullison, S. J. P. Flanagan, L. Siegel, and S. Lathrop, “Perchlorate: sources, uses, and occurrences in the environment,” Remediation Journal, vol. 16, no. 1, pp. 65–89, 2005.
[64]  J. Xu, Y. Song, B. Min, L. Steinberg, and B. E. Logan, “Microbial degradation of perchlorate: principles and applications,” Environmental Engineering Science, vol. 20, no. 5, pp. 405–422, 2003.
[65]  S. Thiboutot, G. Ampleman, A. Marois, et al., “Environmental conditions of surface soils, CFB gagetown training area: delineation of the presence of munitions-related residues (phase III, final report),” Tech. Rep. DREV-TR-2004-205, Defence Research and Development Canada-Valcartier, Quebec, Canada, 2004, http://cradpdf.drdc.gc.ca/PDFS/unc57/p522641.pdf.
[66]  S. Thiboutot, G. Ampleman, A. Marois, et al., “Environmental condition of surface soils and biomass prevailing in the training area at CFB Gagetown, New Brunswick,” DRDC Valcartier TR 2003-152, Defence Research and Development Canada-Valcartier, Quebec, Canada, 2004.
[67]  S. Thiboutot, G. Ampleman, A. Gagnon, et al., “Characterization of antitank firing ranges at CFB valcartier, WATC Wainwright and CFAD Dundurn,” Quebec Report DREVR-9809, Defence Research Establishment Valcartier, Quebec, Canada, 1998.
[68]  M. E. Walsh, C. H. Racine, T. F. Jenkins, A. Gelvin, and T. A. Ranney, “Sampling for explosives residues at Fort Greely, Alaska,” ERDC/CRREL TR-01-15, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, 2001.
[69]  Government Accountability Office (GAO), “DOD operational ranges—more reliable cleanup cost estimates and a proactive approach to identifying contamination are needed,” GAO-04-601, 2004, http://www.gao.gov/htext/d04601.html.
[70]  ATSDR, “Redstone Army Garrison/Marshall Space Flight Center Huntsville, Madison County, Alabama,” Public Health Assessments and Health Consultations, 2005 http://www.atsdr.cdc.gov/HAC/pha/RedstoneArmy/RedstoneArmyPHA071205.pdf.
[71]  T. F. Jenkins, M. E. Walsh, P. G. Thorne, et al., “Site characterization at the inland firing range impact area at Fort Ord,” Special Report 98-9, US Army Cold Regions Research and Engineering Laboratory, 1998.
[72]  A. D. Hewitt, T. F. Jenkins, M. E. Walsh, M. R. Walsh, and S. Taylor, “RDX and TNT residues from live-fire and blow-in-place detonations,” Chemosphere, vol. 61, pp. 888–894, 2005.
[73]  A. D. Hewitt, T. F. Jenkins, T. A. Ranney, D. Lambert, and N. Perron, “Characterization of energetic residues at firing ranges: schofield barracks and training area,” Distribution and Fate of Energetics on DoD Test and Training Ranges, Interim Report 4 ERDC TR-04-4, US Army Engineer Research and Development Center, Vicksburg, Miss, USA, 2004.
[74]  J. C. Pennington, T. F. Jenkins, S. Thiboutot, et al., “Distribution and fate of energetics on DoD test and training ranges: interim report 5,” TR 05-2, Strategic Environmental Research and Development Program, US Army Corps of Engineers Engineer Research and Development Center, Vicksburg, Miss, USA, 2005.
[75]  ATSDR, Weldon Spring Ordnance Works, Weldon Spring, St. Charles County, Missouri, Public Health Assessments and Health Consultations, 2010, http://www.atsdr.cdc.gov/HAC/pha/pha.asp?docid=871&pg=2.
[76]  Environmental Science & Engineering, Draft Final Remedial Investigation/Baseline Risk Assessment Explosives-Munitions Manufacturing Areas Operable Unit, vol. I-V, Crab Orchard National Wildlife Refuge, Louis, Mo, USA, 1994.
[77]  USACHPPM, “Training range site characterization and risk screening, regional range study, Dona Ana Range, Fort Bliss, Texas, May 2002,” Geohydrologic Study 38-EH-6807-02, US Army Center for Health Promotion and Preventive Medicine, Aberdeen Proving Ground, MD, USA, 2004.
[78]  J. C. Pennington, T. F. Jenkins, G. Ampleman, et al., “Distribution and fate of energetics on dod test and training ranges: interim report 2,” ERDC TR-02-8, US Army Engineer Research and Development Center, Vicksburg, Miss, USA, 2002.
[79]  US Environmental Protection Agency, “EPA superfund record of decision: Umatilla Army Depot (Lagoons), Hermiston, OR,” EPA/ROD/R10-94/094, 1994.
[80]  ATSDR, US Army Umatilla Depot Activity. Hermiston, Umatilla County, Oregon, Public Health Assessments and Health Consultations, 2009, http://www.atsdr.cdc.gov/HAC/pha/PHA.asp?docid=290&pg=1.
[81]  ATSDR, Tooele Army Depot (North Area), Tooele, Tooele County, Utah, Public Health Assessments and Health Consultations, 2010, http://www.atsdr.cdc.gov/HAC/pha/pha.asp?docid=108&pg=1.
[82]  ATSDR, Former Nansemond Ordnance Depot, Suffolk, Virginia, Public Health Assessments and Health Consultations, 2009, http://www.atsdr.cdc.gov/HAC/pha/pha.asp?docid=497&pg=3.
[83]  T. F. Jenkins, J. C. Pennington, T. A. Ranney, et al., “Characterization of explosives contamination at military firing ranges,” ERDC TR-01-05, US Army Engineer Research and Development Center, Hanover, NH, USA, 2001.
[84]  US Environmental Protection Agency, “EPA Superfund Record of Decision: Bangor Naval Submarine Base, Silverdale, WA,” EPA/ROD/R10-94/107, 1994, http://www.epa.gov/superfund/sites/rods/fulltext/r1094107.pdf.
[85]  ATSDR, Former Dupont Cladding Site at Cabin Lake (Aka Dupont Barksdale Explosives Plant), WI, Public Health Assessments and Health Consultations, 2009, http://www.atsdr.cdc.gov/HAC/pha/pha.asp?docid=750&pg=1.
[86]  J. M. Brannon and T. E. Myers, “Review of fate and transport processes of explosives,” Tech. Rep. IRRP-97-2, U.S Army Engineer Waterways Experiment Station, Vicksburg, Miss, USA, 1997.
[87]  US EPA, NPL Site Narrative for Pantex Plant (USDOE), PANTEX PLANT (USDOE) Pantex Village, Texas, 2011, http://www.epa.gov/superfund/sites/npl/nar1314.htm.
[88]  US EPA, Joliet Army Ammunition Plant, Region 5 Superfund, 2007, http://www.epa.gov/R5Super/fed_fac/npl_sites/ff_npl_jaap_lap.html.
[89]  B. Clark and R. Boopathy, “Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana,” Journal of Hazardous Materials, vol. 143, pp. 643–648, 2007.
[90]  R. H. Gray and D. A. McGrath, “Environmental monitoring at DOE's pantex plant in Amarillo, Texas,” Federal Facilities Environmental Journal, vol. 6, no. 1, pp. 79–88, 1995.
[91]  M. E. Walsh, T. F. Jenkins, P. S. Schnitker, J. W. Elwell, and M. H. Stutz, “Evaluation of SW846 method 8330 for characterization of sites contaminated with residues of high explosives,” CRREL Report 93-5, US Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, 1993.
[92]  M. E. Walsh, A. D. Hewitt, M. R. Walsh, et al., “Range characterization studies at Donnelly Training Area, Alaska: 2001 and 2002,” Report ERDC/CRREL TR-04-3, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, 2004.
[93]  D. L. Pugh, “Milan Army Ammunition Plant contamination survey,” USATHAMA Report DRXTH-FR-8213, US Army Toxic and Hazardous Materials Agency, Aberdeen, MD, USA, 1982.
[94]  Pantex, http://www.pantex.com/.
[95]  B. D. Newman, D. D. Hickmott, and P. Gram, “Flow and high explosives transport in a semiarid mesa in New Mexico, USA,” Vadose Zone Journal, vol. 6, pp. 774–785, 2007.
[96]  Los Alamos National Laboratory, “RFI report for potential release site 16-021(c),” LA-UR-98-4101, Los Alamos National Laboratory, Los Alamos, NM, USA, 1998.
[97]  ATSDR, Savanna Army Depot Activity, Savanna, Illinois, Public Health Assessments and Health Consultations, 2009, http://www.atsdr.cdc.gov/HAC/pha/pha.asp?docid=601&pg=1#background.
[98]  A. Eisentraeger, G. Reifferscheid, F. Dardenne, R. Blust, and A. Schofer, “Hazard characterization and identification of a former ammunition site using microarrays, bioassays, and chemical analysis,” Environmental and Toxicological Chemistry, vol. 26, pp. 634–646, 2007.
[99]  US EPA, “Region 9 perchlorate update,” 1999, http://www.epa.gov/safewater/ccl/perchlor/r9699fac.pdf.
[100]  E. T. Urbansky, M. L. Magnuson, C. A. Kelty, and S. K. Brown, “Perchlorate uptake by salt cedar (Tamarix ramosissima) in the Las Vegas Wash riparian ecosystem,” Science of the Total Environment, vol. 256, pp. 227–232, 2000.
[101]  D. K. Tipton, D. E. Rolston, K. M. Scow, et al., “Transport and biodegradation of perchlorate in soils,” Journal of Environmental Quality, vol. 32, pp. 40–46, 2003.
[102]  US AEC, “Unexploded ordnance (UXO),” 2011, http://aec.army.mil/usaec/technology/uxo00.html.
[103]  Landmine and Cluster Munition Monitor, “Vietnam,” 2003, http://www.the-monitor.org/index.php/publications/display?url=lm/2003/vietnam.html.
[104]  BOMICO, “Tinh hinh o nhiem bom-min-vat no con sot lai sau chien tranh,” (Situation on the Effects of Landmines, Bombs and Explosives Remaining after the War), draft paper provided by VVAF, p. 7, as cited in: Landmine and Cluster Munition Monitor, “Vietnam,” 2003, http://www.themonitor.org/index.php/publications/display?url=lm/2003/vietnam.html.
[105]  D. Holdridge, “Viet Nam, US organisations to co-operate on mine survey,” Vietnam News Service, 29 January 2003.
[106]  Interview with Nguyen Quang Vinh, Director, and Amb. Nguyen Quy Binh, Vice-Director of the Boundaries Committee, Ministry of Foreign Affairs, Hanoi, as cited in: Landmine and Cluster Munition Monitor, “Vietnam,” 2003, http://www.the-monitor.org/index.php/publications/display?url=lm/2003/vietnam.html.
[107]  T. F. Jenkins, M. E. Walsh, P. H. Miyares, et al., Analysis of Explosives-Related Chemical Signatures in Soil Samples Collected Near Buried Land Mines, Engineer Research and Development Center, Hanover, NH, USA, 2000.
[108]  Lao National Unexploded Ordnance Programme, “The Unexploded Ordnance (UXO) Problem,” 2008, http://www.uxolao.org/uxo%20problem.html.
[109]  C. Bendinelli, “Effects of land mines and unexploded ordnance on the pediatric population and comparison with adults in rural Cambodia,” World Journal of Surgery, vol. 33, no. 5, pp. 1070–1074, 2009.
[110]  Landmine and Cluster Munition Monitor, Cambodia, 2009 http://www.the-monitor.org/index.php/publications/display?act=submit&pqs_year=2002&pqs_type=lm&pqs_report=cambodia&pqs_section=%23Heading3334#Heading3334.
[111]  Australian Department of Defense, “UXO contamination sites—by state,” 2010, http://www.defence.gov.au/uxo/drn_reports/uxo_by_state.asp.
[112]  UNICEF, “Landmines and UXO in Somaliland, Puntland and Central & Southern Somalia: a feasibility study,” 2000, http://www.unicef.org/evaldatabase/files/SOM_00-003.pdf.
[113]  H. Hafidh, “U.N. wants Iraq to issue more visas for its staff,” Tech. Rep., Reuters, Baghdad, Iraq, 2002.
[114]  New York Times, “Israeli bomblets plague Lebanon,” 2006, http://www.nytimes.com/2006/10/06/world/middleeast/06cluster.html?pagewanted=1&_r=1&ref=todayspaper.
[115]  A. Shadid, “In Lebanon, a war’s lethal harvest,” Washington Post Foreign Service, September 26, 2006, http://www.washingtonpost.com/wp-dyn/content/article/2006/09/25/AR2006092501500.html.
[116]  Landmine and Cluster Munition Monitor, “Palestine,” 2009, http://www.the-monitor.org/index.php/publications/display?url=lm/2003/palestine.html.
[117]  N. Prevost and UNICEF, “Unexploded Ordnance and Mine Action in the Occupied Palestinian Territory,” Landmine and Cluster Munition Monitor, 2003, http://www.the-monitor.org/index.php/publications/display?url=lm/2003/palestine.html.
[118]  Landmine and Cluster Munition Monitor, “Armenia,” 2002, http://www.the-monitor.org/index.php/publications/display?act=submit&pqs_year=2002&pqs_type=lm&pqs_report=armenia&pqs_section=%23Heading14227#Heading14227.
[119]  Landmine and Cluster Munition Monitor, “Chechnya,” 2009, http://www.the-monitor.org/index.php/publications/display?url=lm/2003/chechnya.html.
[120]  Interfax, Unexploded Federal Ammunition Makes Up Most of Landmines Used by Chechen Guerillas, Interfax, Moscow, Russia, 2003.
[121]  “Unexploded federal ammunition makes up most of landmines used by Chechen guerrillas,” Izvestia Interfax-AVN (Moscow), 20 May, 2003, Interview with Major Yevgeny Pasynok, Chief of Engineering Service, Grozny Military Commandant's Office.
[122]  U. Khanbiev, Minister for Health of the Chechen Republic, citation translated from Russian by Landmine Monitor, 2002, http://www.chechenpress.com.
[123]  O. Petrovsky, Hellish Surprises, UTRORU Information Agency, 2002.
[124]  J. A. MacDonald, M. J. Small, and M. G. Morgan, “Quantifying the risks of unexploded ordnance at closed military bases,” Environmental Science and Technology, vol. 43, no. 2, pp. 259–265, 2009.
[125]  Defense Science Board, Report of the Defense Science Board Task Force on Unexploded Ordnance, Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics, Washington, DC, USA, 2003.
[126]  G. Ampleman, S. Thiboutot, S. Désilets, A. Gagnon, and A. Marois, “Evaluation of the soils contamination by explosives at CFB Chilliwack and CFAD Rocky Point,” DREV Report TR-2000-103, Quebec, Canada, 2000.
[127]  G. Ampleman, D. Faucher, S. Thiboutot, J. Hawari, and F. Monteil-Rivera, “Evaluation of underwater contamination by explosives and metals at Point Amour, Labrador and in the Halifax Harbour Area,” DRDC Valcartier TR 2004-125, Defence Research and Development, Canada, 2004.
[128]  T. F. Jenkins, A. D. Hewitt, C. L. Grant et al., “Identity and distribution of residues of energetic compounds at army live-fire training ranges,” Chemosphere, vol. 63, no. 8, pp. 1280–1290, 2006.
[129]  M. E. Walsh, C. M. Collins, R. N. Bailey, and C. L. Grant, “Composite sampling of sediments contaminated with white phosphorus,” Special Report 97-30, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, 1997.
[130]  T. F. Jenkins, C. L. Grant, M. E. Walsh et al., “Coping with spatial heterogeneity effects on sampling and analysis at an HMX-contaminated antitank firing range,” Field Analytical Chemistry and Technology, vol. 3, no. 1, pp. 19–28, 1999.
[131]  T. F. Jenkins, T. A. Ranney, A. D. Hewitt, M. E. Walsh, and K. L. Bjella, “Representative sampling for energetic compounds at an anti-tank firing range,” ERDC/CRREL TR-04-7, US Army Engineer Research and Development Center, Hanover, NH, USA, 2004.
[132]  T. F. Jenkins, A. D. Hewitt, M. E. Walsh, C. L. Grant, and C. A. Ramsey, “Comment on data representativeness for risk assessment by Rosemary Mattuck et al.,” Journal of Environmental Forensics, vol. 6, no. 4, pp. 321–323, 2005.
[133]  A. D. Hewitt, T. F. Jenkins, T. A. Ranney, et al., “Estimates for explosives residues from the detonation of army munitions,” ERDC/ CRREL TR-03-16, US Army Engineer Research and Development Center, Hanover, NH, USA, 2003.
[134]  AMEC, “Draft central impact area soil report technical team memorandum 01-13 Camp Edwards impact area groundwater quality study, Camp Edwards, Massachusetts Military Reservation, Cape Cod, MA,” MMR-3915, AMEC Earth and Environmental, Westford, Mass, USA, 2001.
[135]  M.R. Walsh, S. Taylor, M. E. Walsh, et al., “Residues from live fire detonations of 155-mm howitzer rounds,” ERDC/CRREL TR-05-14, US Army Engineer Research and Development Center, Hanover, NH, USA, 2005.
[136]  S. Taylor, A. Hewitt, J. Lever et al., “TNT particle size distributions from detonated 155-mm howitzer rounds,” Chemosphere, vol. 55, no. 3, pp. 357–367, 2004.
[137]  J. Lewis, R. Martel, L. Trépanier, G. Ampleman, and S. Thiboutot, “Quantifying the transport of energetic materials in unsaturated sediments from cracked unexploded ordnance,” Journal of Environmental Quality, vol. 38, no. 6, pp. 2229–2236, 2009.
[138]  J. Clausen, J. Robb, D. Curry, and N. Korte, “A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA,” Environmental Pollution, vol. 129, no. 1, pp. 13–21, 2004.
[139]  J. L. Clausen, “Range assessment lessons learned,” Federal Facilities Environment Journal, vol. 16, pp. 49–62, 2005.
[140]  W. F. Fitzpatrick, The Lessons of Massachusetts Military Reservation, Massachusetts Army National Guard, AEPI-IFP-1001B Army Environmental Policy Institute, Atlanta, Ga, USA, 2001.
[141]  US EPA, “Administrative order for: Massachusetts Military Reservation training range and impact area,” EPA Docket RCRA 1-2001-0014, Washington, DC, USA, 2001.
[142]  R. Boopathy, J. Manning, and C. F. Kulpa, “Optimization of environmental factors for the biological treatment of trinitrotoluene-contaminated soil,” Archives of Environmental Contamination and Toxicology, vol. 32, no. 1, pp. 94–98, 1997.
[143]  USACHPPM, Draft site inspection No. 38-26-1339-95, Site CS-19, Massachusetts Military Reservation, Cape Cod, Massachusetts, US Center for Health Promotion and Preventive Medicine, Aberdeen Proving Ground, Md, USA, 1994.
[144]  T. F. Jenkins, M. E. Walsh, P. G. Thorne, et al., “Assessment of sampling error associated with collection and analysis of soil samples at a firing range contaminated with HMX,” CRREL Report 97-22, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, 1997.
[145]  S. Brochu, E. Diaz, S. Thiboutot, et al., “Assessment of 100 years of military training in Canada: the case of Canadian Force Base Petawawa,” TR-2008-118, Defense Research Development Canada (DRDC-Valcartier), Quebec, Canada, 2008.
[146]  C. H. Racine, M. E. Walsh, C. M. Collins, D. J. Calkins, B. D. Roebuck, and L. Reitsma, “Waterfowl mortality in Eagle River Flats, Alaska: the role of munition residues,” CRREL Report 92-5, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, 1992.
[147]  L. F. Phillips and C. A. Bouwkamp, “Effects of active firing range activities on environmental media, Aberdeen Proving Ground-Aberdeen Area, Maryland, 31 January—30 December 1993,” Wastewater Management Study 32-24-HP16-94, US Army Environmental Hygiene Agency, Aberdeen Proving Ground, Md, USA, 1994.
[148]  A. D. Hewitt and S. R. Bigl, “Elution of energetic compounds from propellant and composition B residues,” ERDC/CRREL TR-05-13, Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center, Hanover, NH, USA, 2005, http://libweb.erdc.usace.army.mil/Archimages/2705.pdf.
[149]  G. Bordeleau, Etude hydrogeologique de la Base Aerienne de Cold Lake, Alberta et determination de l’origine du nitrate dans l’eau souterraine, M.S. thesis, INRSEte, Quebec, Canada, 2007.
[150]  D. M. Townsend and T. E. Myers, “Recent developments in formulating model descriptors for subsurface transformation and sorption of TNT, RDX, and HMX,” Tech. Rep. IRRP-96-1, US Army Engineer Waterways Experiment Station, Vicksburg, Miss, USA, 1996.
[151]  J. Wilkinson and D. Watt, Review of Demilitarization and Disposal Techniques for Munitions and Related Materials, Munitions Safety Information Analysis Centre (MSIAC), NATO Headquarters, Brussels, Belgium.
[152]  T. A. Douglas, M. E. Walsh, C. J. McGrath, C. A. Weiss, A. M. Jaramillo, and T. P. Trainor, “Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions,” Environmental Toxicology and Chemistry, vol. 30, no. 2, pp. 345–353, 2010.
[153]  S. Taylor, J. H. Lever, J. Fadden, N. Perron, and B. Packer, “Simulated rainfall-driven dissolution of TNT, Tritonal, Comp B and Octol particles,” Chemosphere, vol. 75, no. 8, pp. 1074–1081, 2009.
[154]  K. S. Ro, A. Venugopal, D. D. Adrian et al., “Solubility of 2,4,6-trinitrotoluene (TNT) in water,” Journal of Chemical and Engineering Data, vol. 41, no. 4, pp. 758–761, 1996.
[155]  J. M. Brannon, D. D. Adrian, J. C. Pennington, T. E. Myers, and C. A. Hayes, “Slow release of PCB, TNT, and RDX from soils and sediments,” Tech. Rep. EL-92-38, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss, USA, 1992.
[156]  K. Verschueren, Handbook of Environmental Data on Organic Chemicals, D. Van Nostrand Reinhold Company, New York, NY, USA, 2nd edition, 1983.
[157]  R. J. Spanggord, R. W. Mabey, T. W. Chou, et al., “Environmental fate studies of HMX, phase II, detailed studies, final report,” SRI International, Menlo Park, Calif, USA, 1983.
[158]  K. M. Dontsova, J. C. Pennington, C. Hayes, J. ?imunek, and C. W. Williford, “Dissolution and transport of 2,4-DNT and 2,6-DNT from M1 propellant in soil,” Chemosphere, vol. 77, no. 4, pp. 597–603, 2009.
[159]  J. M. Phelan, J. V. Romero, J. L. Barnett, and D. R. Parker, “Solubility and dissolution kinetics of composition B explosive in water,” SAND Report SAND2002-2420, Sandia National Laboratories, Albuquerque, NM, USA, 2002.
[160]  J. C. Lynch, J. M. Brannon, and J. J. Delfino, “Effects of component interactions on the aqueous solubilities and dissolution rates of the explosive formulations octol, composition B, and LX-14,” Journal of Chemical and Engineering Data, vol. 47, no. 3, pp. 542–549, 2002.
[161]  J. C. Lynch, “Dissolution kinetics of high explosive compounds (TNT, RDX, HMX),” ERDC/EL TR-02-23, US Army Engineering Research and Development Center, Vicksburg, Miss, USA, 2002.
[162]  J. C. Lynch, K. F. Myers, J. M. Brannon, and J. J. Delfino, “Effects of pH and temperature on the aqueous solubility and dissolution rate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX),” Journal of Chemical and Engineering Data, vol. 46, no. 6, pp. 1549–1555, 2001.
[163]  J. H. Lever, S. Taylor, L. Perovich, K. Bjella, and B. Packer, “Dissolution of composition B detonation residuals,” Environmental Science and Technology, vol. 39, no. 22, pp. 8803–8811, 2005.
[164]  J. C. Lynch, J. M. Brannon, and J. J. Delfino, “Dissolution rates of three high explosive compounds: TNT, RDX, and HMX,” Chemosphere, vol. 47, no. 7, pp. 725–734, 2002.
[165]  J. C. Lynch, J. M. Brannon, K. Hatfield, and J. J. Delfino, “An exploratory approach to modeling explosive compound persistence and flux using dissolution kinetics,” Journal of Contaminant Hydrology, vol. 66, no. 3-4, pp. 147–159, 2003.
[166]  J. C. Pennington and J. M. Brannon, “Environmental fate of explosives,” Thermochimica Acta, vol. 384, no. 1-2, pp. 163–172, 2002.
[167]  S. B. Haderlein, K. W. Weissmahr, and R. P. Schwarzenbach, “Specific adsorption of nitroaromatic explosives and pesticides to clay minerals,” Environmental Science and Technology, vol. 30, no. 2, pp. 612–622, 1996.
[168]  K. A. Thorn, J. C. Pennington, and C. A. Hayes, “15N NMR investigation of the reduction and binding of TNT in an aerobic bench scale reactor simulating windrow composting,” Environmental Science and Technology, vol. 36, no. 17, pp. 3797–3805, 2002.
[169]  H. Yamamoto, M. C. Morley, G. E. Speitel, and J. Clausen, “Fate and transport of high explosives in a sandy soil: adsorption and desorption,” Soil and Sediment Contamination, vol. 13, no. 5, pp. 459–477, 2004.
[170]  J. L. Clausen, C. Scott, and I. Osgerby, “Fate of nitroglycerin and dinitrotoluene in soil at small arms training ranges,” Soil and Sediment Contamination, vol. 20, pp. 649–671, 2011.
[171]  M. Windholz, The Merck Index, Merck and Company, Rahway, NJ, USA, 9th edition, 1979.
[172]  J. Singh, S. D. Comfort, L. S. Hundal, and P. J. Shea, “Long-term RDX sorption and fate in soil,” Journal of Environmental Quality, vol. 27, no. 3, pp. 572–577, 1998.
[173]  J. C. Pennington and W. H. Patrick Jr., “Adsorption and desorption of 2,4,6-trinitrotoluene by soils,” Journal of Environmental Quality, vol. 19, no. 3, pp. 559–567, 1990.
[174]  J. M. Brannon, C. B. Price, C. Hayes, and S. L. Yost, “Aquifer soil cation substitution and adsorption of TNT, RDX, and HMX,” Soil and Sediment Contamination, vol. 11, no. 3, pp. 327–338, 2002.
[175]  C. J. McGrath, “Review of formulations for processes affecting the subsurface transport of explosives,” Tech. Rep. IRRP-95-2, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss, USA, 1995.
[176]  S. K. Xue, I. K. Iskandar, and H. M. Selim, “Adsorption-desorption of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in soils,” Soil Science, vol. 160, no. 5, pp. 317–327, 1995.
[177]  J. C. Pennington, D. Gunnison, D. W. Harrelson, et al., “Natural attenuation of explosives in soil and water systems at Department of Defence sites: interim report,” Tech. Rep. EL-99-8, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss, USA, 1999.
[178]  T. E. Myers, J. M. Brannon, J. C. Pennington, et al., “Laboratory studies of soil sorption/transformation of TNT, RDX, and HMX,” Tech. Rep. IRRP-98-8, US Army Engineer Waterways Experiment Station, Vicksburg, Miss, USA, 1998.
[179]  H. M. Selim and I. K. Iskandar, “Sorption-desorption and transport of TNT and RDX in soils,” CRREL Report 94-7, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, 1994.
[180]  C. C. Ainsworth, S. D. Harvey, J. E. Szecsodt, et al., “Relationship between the leachability characteristics of unique energetic compounds and soil properties,” Project 91PP1800, US Army Biomedical Research and Development Laboratory, Fort Detrick, Md, USA, 1993.
[181]  C. B. Price, J. M. Brannon, S. L. Yost, et al., “Transformation of RDX and HMX under controlled Eh/pH conditions,” Tech. Rep. IRRP-98-2, US Army Engineering Waterways Experimental Station, Vicksburg, Miss, USA, 1998.
[182]  J. Brannon, P. Deliman, C. Ruiz, et al., “Conceptual model and process descriptor formulations for fate and transport of UXO,” Tech. Rep. IRRP-99-1, US Army Engineer Research and Development Center, Vicksburg, Miss, USA, 1999.
[183]  T. W. Sheremata, S. Thiboutot, G. Ampleman, L. Paquet, A. Halasz, and J. Hawari, “Fate of 2,4,6-trinitrotoluene and its metabolites in natural and model soil systems,” Environmental Science and Technology, vol. 33, no. 22, pp. 4002–4008, 1999.
[184]  C. B. Price, J. M. Brannon, S. L. Yost, and A. H. Charolett, “Adsorption and transformation of explosives in low-carbon aquifer soils,” Report ERDC/EL TR-00-11, US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, Miss, USA, 2000.
[185]  M. V. Cattaneo, J. C. Pennington, J. M. Brannon, D. Gunnison, D. W. Harrelson, and M. Zakikhani, “Natural attenuation of explosives,” in Remediation of Hazardous Waste Contaminated Soils, Marcel Dekker, New York, NY, USA, 2000.
[186]  N. Singh, D. Hennecke, J. Hoerner, W. Koerdel, and A. Schaeffer, “Sorption-desorption of trinitrotoluene in soils: effect of saturating metal cations,” Bulletin of Environmental Contamination and Toxicology, vol. 80, no. 5, pp. 443–446, 2008.
[187]  K. W. Weissmahr, S. B. Haderlein, and R. P. Schwarzenbach, “Complex formation of soil minerals with nitroaromatic explosives and other π-acceptors,” Soil Science Society of America Journal, vol. 62, no. 2, pp. 369–378, 1998.
[188]  J. M. Brannon, C. B. Price, S. L. Yost, C. Hayes, J. E. Mirecki, and B. Porter, “Fate and transport parameters for firing range residues,” In Distribution and Fate of Energetics on DoD Test and Training Ranges: Interim Report 4 ERDC TR-04-4, US Army Engineer Research and Development Center, Vicksburg, Miss, USA, 2004.
[189]  W. R. Haag, R. Spanggord, T. Mill et al., “Aquatic environmental fate of nitroguanidine,” Environmental Toxicology and Chemistry, vol. 9, no. 11, pp. 1359–1367, 1990.
[190]  J. L. Clausen, C. Scott, N. Mulherin, et al., “Sorption/desorption measurements of nitroglycerin and dinitrotoluene in Camp Edwards, Massachusetts soil,” ERDC/CRREL TR-10-1, Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center, Hanover, NH, USA, 2010.
[191]  G. Ji and X. Kong, “Adsorption of chloride, nitrate, and perchlorate by variable charge soils,” Pedosphere, vol. 2, pp. 317–326, 1992.
[192]  F. Monteil-Rivera, C. Groom, and J. Hawari, “Sorption and degradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in soil,” Environmental Science and Technology, vol. 37, no. 17, pp. 3878–3884, 2003.
[193]  C. B. Price, J. M. Brannon, and C. A. Hayes, “Effect of redox potential and pH on TNT transformation in soil-water slurries,” Journal of Environmental Engineering, vol. 123, no. 10, pp. 988–992, 1997.
[194]  T. A. Douglas, M. E. Walsh, C. J. McGrath, and C. A. Weiss, “Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils,” Journal of Environmental Quality, vol. 38, no. 6, pp. 2285–2294, 2009.
[195]  D. J. Glover and J. C. Hoffsommer, “Photolysis of RDX. Identification and reactions of products,” Tech. Rep. NSWC TR-79-349, Naval Surface Weapons Center, Silver Spring, Md, USA, 1979.
[196]  N. E. Burlinson, L. A. Kaplan, and C. E. Adams, “Photochemistry of TNT: investigation of the “pink water” problem,” NOLTR 73-172, Naval Ordnance Laboratory, Silver Spring, Md, USA, 1973.
[197]  M. Godejohann, A. Preiss, K. Levsen, K.-M. Wollin, and C. Mügge, “Determination of polar organic pollutants in aqueous samples of former ammunition sites in Lower Saxony by means of HPLC/photodiode array detection (HPLC/PDA) and proton nuclear magnetic resonance spectroscopy (1H-NMR),” Acta Hydrochimica et Hydrobiologica, vol. 26, no. 6, pp. 330–337, 1998.
[198]  T. C. Schmidt, M. Petersmann, L. Kaminski, E. V. L?w, and G. Stork, “Analysis of aminobenzoic acids in waste water from a former ammunition plant with HPLC and combined diode array and fluorescence detection,” Fresenius' Journal of Analytical Chemistry, vol. 357, no. 1, pp. 121–126, 1997.
[199]  A. Preiss, M. Elend, S. Gerling, E. Berger-Preiss, and K. Steinbach, “Identification of highly polar nitroaromatic compounds in leachate and ground water samples from a TNT-contaminated waste site by LC-MS, LC-NMR, and off-line NMR and MS investigations,” Analytical and Bioanalytical Chemistry, vol. 389, no. 6, pp. 1979–1988, 2007.
[200]  D. Hennecke, W. K?rdel, K. Steinbach, and B. Herrmann, “Transformation processes of explosives in natural water/sediment systems,” in Proceedings of the 10th International UFZ Deltares/TNO Conference on Management of Soil, Groundwater and Sediments, Milano, Italy, September 2008.
[201]  D. T. Burton and S. D. Turley, “Reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) toxicity to the cladoceran Ceriodaphnia dubia following photolysis in sunlight,” Bulletin of Environmental Contamination and Toxicology, vol. 55, no. 1, pp. 89–95, 1995.
[202]  P. Bose, W. H. Glaze, and D. S. Maddox, “Degradation of RDX by various advanced oxidation processes: II. organic by-products,” Water Research, vol. 32, no. 4, pp. 1005–1018, 1998.
[203]  G. R. Peyton, M. H. LeFaivre, and S. W. Maloney, “Verification of RDX photolysis mechanism,” Report CERL-TR-99/93, Construction Engineering Research Lab (Army), IL, 1999.
[204]  H. M. Seth-Smith, Microbial degradation of RDX, PhD Dissertation, University of Cambridge, UK, 2002.
[205]  M. S. Simmons and R. G. Zepp, “Influence of humic substances on photolysis of nitroaromatic compounds in aqueous systems,” Water Research, vol. 20, no. 7, pp. 899–904, 1986.
[206]  A. Mills, A. Seth, and G. Peters, “Alkaline hydrolysis of trinitrotoluene, TNT,” Physical Chemistry Chemical Physics, vol. 5, no. 18, pp. 3921–3927, 2003.
[207]  J. L. Davis, M. C. Brooks, S. L. Larson, C. C. Nestler, and D. R. Felt, “Lime treatment of explosives-contaminated soil from munitions plants and firing ranges,” Soil and Sediment Contamination, vol. 15, no. 6, pp. 565–580, 2006.
[208]  M. Emmrich, “Kinetics of the alkaline hydrolysis of 2,4,6-trinitrotoluene in aqueous solution and highly contaminated soils,” Environmental Science and Technology, vol. 33, no. 21, pp. 3802–3805, 1999.
[209]  A. Saupe, H. J. Garvens, and L. Heinze, “Alkaline hydrolysis of TNT and TNT in soil followed by thermal treatment of the hydrolysates,” Chemosphere, vol. 36, no. 8, pp. 1725–1744, 1998.
[210]  R. Bajpai, D. Parekh, S. Herrmann, M. Popovi?, J. Paca, and M. Qasim, “A kinetic model of aqueous-phase alkali hydrolysis of 2,4,6-trinitrotoluene,” Journal of Hazardous Materials, vol. 106, no. 1, pp. 37–44, 2004.
[211]  R. J. Spanggord, T. Mill, T. W. Chou, R. W. Mabey, J. H. Smith, and S. Lee, “Environmental fate studies on certain munition wastewater constituents,” Final Report, Phase 1: Literature Review LSU-7934, SRI International, Menlo Park, Calif, USA, 1980.
[212]  R. J. Spanggord, R. W. Mabey, T. W. Chou, et al., “Environmental fate studies of HMX, screening studies, final report, phase I—Laboratory study,” SRI Project LSU-4412, SRI International, Menlo Park, CA, for US Army Medical Research and Development Command, Fort Detrick, Md, USA, 1982.
[213]  V. K. Balakrishnan, A. Halasz, and J. Hawari, “Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates,” Environmental Science and Technology, vol. 37, pp. 1838–1843, 2003.
[214]  K. B. Gregory, P. Larese-Casanova, G. F. Parkin, and M. M. Scherer, “Abiotic transformation of hexahydro-1,3,5-trinito-1,3,5-triazine by Fe II bound to magnetite,” Environmental Science and Technology, vol. 38, no. 5, pp. 1408–1414, 2004.
[215]  D. M. Townsend, T. E. Myers, and D. D. Adrian, “2,4,6-trinitrotoluene (TNT) transformation/sorption in thin-disk soil columns,” Tech. Rep. IRRP-95-4, US Army Engineer Waterways Experiment Station, Vicksburg, Miss, USA, 1995.
[216]  H. M. Selim, S. K. Xue, and I. K. Iskandar, “Transport of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in soils,” Soil Science, vol. 160, no. 5, pp. 328–339, 1995.
[217]  D. L. Kaplan and A. M. Kaplan, “Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions,” Applied and Environmental Microbiology, vol. 44, no. 3, pp. 757–760, 1982.
[218]  N. G. McCormick, F. E. Feeherry, and H. S. Levinson, “Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds,” Applied and Environmental Microbiology, vol. 31, no. 6, pp. 949–958, 1976.
[219]  C. B. Price, J. M. Brannon, and C. A. Hayes, “Transformation of 2,4,6-trinitrotoluene under controlled Eh/pH conditions,” Tech. Rep. IRRP-95-5, US Army Engineer Waterways Experiment Station, Vicksburg, Miss, USA, 1995.
[220]  R. G. Reifler and B. F. Smets, “Enzymatic reduction of 2,4,6-trinitrotoluene and related nitroarenes: kinetics linked to one-electron redox potentials,” Environmental Science and Technology, vol. 34, no. 18, pp. 3900–3906, 2000.
[221]  J. Z. Bandstra, R. Miehr, R. L. Johnson, and P. G. Tratnyek, “Reduction of 2,4,6-trinitrotoluene by iron metal: kinetic controls on product distributions in batch experiments,” Environmental Science and Technology, vol. 39, no. 1, pp. 230–238, 2005.
[222]  J. F. Devlin, J. Klausen, and R. P. Schwarzenbach, “Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments,” Environmental Science and Technology, vol. 32, no. 13, pp. 1941–1947, 1998.
[223]  J. M. Brannon, C. B. Price, and C. Hayes, “Abiotic transformation of TNT in montmorillonite and soil suspensions under reducing conditions,” Chemosphere, vol. 36, no. 6, pp. 1453–1462, 1998.
[224]  R. L. Crawford, “Biodegradation of nitrated munitions compounds and herbicides by obligately anaerobic bacteria,” in Biodegradation of Nitroaromatic Compounds, J. C. Spain, Ed., Plenum Press, New York, NY, USA, 1995.
[225]  S. B. Funk, D. J. Roberts, D. L. Crawford, and R. L. Crawford, “Initial-phase optimization for bioremediation of munition compound—contaminated soils,” Applied and Environmental Microbiology, vol. 59, no. 7, pp. 2171–2177, 1993.
[226]  C. B. Price, J. M. Brannon, S. L. Yost, and C. A. Hayes, “Relationship between redox potential and pH on RDX transformation in soil-water slurries,” Journal of Environmental Engineering, vol. 127, no. 1, pp. 26–31, 2001.
[227]  N. G. McCormick, J. H. Cornell, and A. M. Kaplan, “Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine,” Applied and Environmental Microbiology, vol. 42, no. 5, pp. 817–823, 1981.
[228]  D. L. Kaplan, “Biotechnology and bioremediation for organic energetic compounds,” in Organic Energetic Compounds, P. Marikas, Ed., pp. 373–395, Nova Science Publishers, New York, NY, USA, 1996.
[229]  J. Park, S. D. Comfort, P. J. Shea, and T. A. Machacek, “Remediating munitions-contaminated soil with zero valent iron and cationic surfactants,” Journal of Environmental Quality, vol. 33, no. 4, pp. 1305–1313, 2004.
[230]  L. S. Hundal, J. Singh, E. L. Bier, P. J. Shea, S. D. Comfort, and W. L. Powers, “Removal of TNT and RDX from water and soil using iron metal,” Environmental Pollution, vol. 97, no. 1-2, pp. 55–64, 1997.
[231]  D. Colon, E. J. Weber, J. L. Anderson, P. Winget, and L. A. Suarez, “Reduction of nitrosobenzenes and n-hydroxylanilines by Fe(II) species: elucidation of the reaction mechanism,” Environmental Science and Technology, vol. 40, pp. 4449–4454, 2006.
[232]  D. Liu, K. Thomson, and A. C. Anderson, “Identification of nitroso compounds from biotransformation of 2,4-dinitrotoluene,” Applied and Environmental Microbiology, vol. 47, no. 6, pp. 1295–1298, 1984.
[233]  J. S. Zhao, D. Fournier, S. Thiboutot, G. Ampleman, and J. Hawari, “Biodegradation and bioremediation of explosives,” in Applied Bioremediation and Phytoremediation, A. Singh and O. P. Ward, Eds., Springer, New York, NY, USA, 2004.
[234]  M. B. Pasti-Grigsby, A. Paszczynski, S. Goszczynski, D. L. Crawford, and R. L. Crawford, “Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 58, no. 11, pp. 3605–3613, 1992.
[235]  J. T. Spadaro, M. H. Gold, and V. Renganathan, “Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 58, no. 8, pp. 2397–2401, 1992.
[236]  G. Soli, “Microbial degradation of cyclonite (RDX),” Report NWC-TP-5525 / AD-762 751, US National Technical Information Service (Naval Weapons Center China Lake CA), Washington, DC, USA, 1973.
[237]  R. J. Spanggord, T. Mill, T. W. Chou, R. W. Mabey, W. H. Smith, and S. Lee, “Environmental fate studies on certain munition wastewater constituents, final report, part II—laboratory study,” AD A099256, SRI International, Menlo Park, CA, for US Army Medical Research and Development Command, Fort Detrick, Md, USA, 1980.
[238]  N. V. Coleman, D. R. Nelson, and T. Duxbury, “Aerobic biodegradation of hexahydro-1,3,5 trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22,” Soil Biology and Biochemistry, vol. 30, no. 8-9, pp. 1159–1167, 1998.
[239]  N. G. McCormick, J. H. Cornell, and A. M. Kaplan, “The anaerobic transformation of RDX and HMX and their acetylated derivatives,” Tech. Rep. A149464 (TR85–008), US Army Natick Research and Development Center, Natick, Mass, USA, 1985.
[240]  K. M. Regan and R. L. Crawford, “Characterization of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX),” Biotechnology Letters, vol. 16, no. 10, pp. 1081–1086, 1994.
[241]  C. A. Groom, S. Beaudet, A. Halasz, L. Paquet, and J. Hawari, “Detection of the cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) and their degradation products in soil environments,” Journal of Chromatography A, vol. 909, no. 1, pp. 53–60, 2001.
[242]  C. F. Shen, J. A. Hawari, L. Paquet, G. Ampleman, S. Thiboutot, and S. R. Guiot, “Explosive biodegradation in soil slurry batch reactors amended with exogenous microorganisms,” Water Science and Technology, vol. 43, no. 3, pp. 291–298, 2001.
[243]  C. F. Shen, S. R. Guiot, S. Thiboutot, G. Ampleman, and J. Hawari, “Fate of explosives and their metabolites in bioslurry treatment processes,” Biodegradation, vol. 8, no. 5, pp. 339–347, 1997.
[244]  S. Toze and L. Zappia, “Microbial degradation of munition compounds in production wastewater,” Water Research, vol. 33, no. 13, pp. 3040–3045, 1999.
[245]  D. L. Freedman and K. W. Sutherland, “Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under nitrate-reducing conditions,” Water Science and Technology, vol. 38, no. 7, pp. 33–40, 1998.
[246]  R. Boopathy, M. Gurgas, J. Ullian, and J. F. Manning, “Metabolism of explosive compounds by sulfate-reducing bacteria,” Current Microbiology, vol. 37, no. 2, pp. 127–131, 1998.
[247]  R. Boopathy, J. Manning, and C. F. Kulpa, “Biotransformation of explosives by anaerobic consortia in liquid culture and in soil slurry,” International Biodeterioration and Biodegradation, vol. 41, no. 1, pp. 67–74, 1998.
[248]  J. Hawari, A. Halasz, T. Sheremata et al., “Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge,” Applied and Environmental Microbiology, vol. 66, no. 6, pp. 2652–2657, 2000.
[249]  C. L. Kitts, D. P. Cunningham, and P. J. Unkefer, “Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive contaminated soil,” Applied and Environmental Microbiology, vol. 60, no. 12, pp. 4608–4711, 1994.
[250]  D. M. Young, P. J. Unkefer, and K. L. Ogden, “Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens,” Biotechnology and Bioengineering, vol. 53, pp. 515–522, 1997.
[251]  T. W. Sheremata and J. Hawari, “Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide,” Environmental Science and Technology, vol. 34, no. 16, pp. 3384–3388, 2000.
[252]  P. R. Binks, S. Nicklin, and N. C. Bruce, “Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1,” Applied and Environmental Microbiology, vol. 61, no. 4, pp. 1318–1322, 1995.
[253]  B. Bhushan, A. Halasz, S. Thiboutot, G. Ampleman, and J. Hawari, “Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2,” Biochemical and Biophysical Research Communications, vol. 316, no. 3, pp. 816–821, 2004.
[254]  Y. Yang, X. Wang, P. Yin, W. Li, and P. Zhou, “Studies on three strains of Corynebacterium degrading cyclotrimethylene-trinitroamine (RDX),” Acta Microbiologica Sinica, vol. 23, pp. 251–256, 1983.
[255]  S. Thiboutot, J. Lavigne, G. Ampleman, et al., The International Symposium on Energetic Materials Technology, Orlando, Fla, USA, 1994.
[256]  A. M. Jones, S. Labelle, et al., “Assessment of the aerobic biodegradation potential of RDX, TNT, GAP, and NC,” in Environmental Biotechnology—Principles and Applications, M. Moo-Young, W. A. Anderson, and A. M. Chakrabarty, Eds., pp. 368–381, Kluwer Academic Press, New York, NY, USA, 1995.
[257]  B. van Aken, J. M. Yoon, C. L. Just, and J. L. Schnoor, “Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltodesp × nigra DN-34),” Environmental Science and Technology, vol. 38, no. 17, pp. 4572–4579, 2004.
[258]  C. Axtell, C. G. Johnston, and J. A. Bumpus, “Bioremediation of soil contaminated with explosives at the Naval Weapons Station Yorktown,” Soil and Sediment Contamination, vol. 9, no. 6, pp. 537–548, 2000.
[259]  D. Fournier, A. Halasz, S. Thiboutot, G. Ampleman, D. Manno, and J. Hawari, “Biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway,” Environmental Science and Technology, vol. 38, no. 15, pp. 4130–4133, 2004.
[260]  J. S. Zhao, J. Spain, and J. Hawari, “Phylogenetic and metabolic diversity of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX)-transforming bacteria in strictly anaerobic mixed cultures enriched on RDX as nitrogen source,” FEMS Microbiology Ecology, vol. 46, no. 2, pp. 189–196, 2003.
[261]  R. Boopathy, “Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition,” Bioresource Technology, vol. 76, no. 3, pp. 241–244, 2001.
[262]  A. Ha?dour and J. L. Ramos, “Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene by Pseudomonas sp.,” Environmental Science and Technology, vol. 30, no. 7, pp. 2365–2370, 1996.
[263]  U. Lendenmann, J. C. Spain, and B. F. Smets, “Simultaneous biodegradation of 2,4-dinitrotoluene and 2,6-dinitrotoluene in an aerobic fluidized-bed biofilm reactor,” Environmental Science and Technology, vol. 32, no. 1, pp. 82–87, 1998.
[264]  S. F. Nishino, G. Paoli, and J. C. Spain, “Aerobic biodegradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene,” Applied and Environmental Microbiology, vol. 66, pp. 2138–2147, 2000.
[265]  N. G. McCormick, J. H. Cornell, and A. M. Kaplan, “Identification of biotransformation products from 2,4 dinitrotoluene,” Applied and Environmental Microbiology, vol. 35, no. 5, pp. 945–948, 1978.
[266]  K. F. Reardon and J. C. Spain, “Immobilized cell bioreactor for 2,4-dinitrotoluene degradation,” in Proceedings of the ABSTR Biot86, 205th ACS National Meeting, American Chemical Society, Washington, DC, USA, 1993.
[267]  R. E. Williams and N. C. Bruce, “The role of nitrate ester reductase enzymes in the biodegradation of explosives,” in Biodegradation of Nitroaromatic Compounds and Explosives, J. C. Spain, J. B. Hughes, and H.-J. Knackmuss, Eds., Lewis Publishers, Boca Raton, Fla, USA, 2000.
[268]  G. F. White, J. R. Snape, and S. Nicklin, “Biodegradation of glycerol trinitrate and pentaerythritol tetranitrate by Agrobacterium radiobacter,” Applied and Environmental Microbiology, vol. 62, no. 2, pp. 637–642, 1996.
[269]  M. Meng, W. Q. Sun, L. A. Goelhaar, et al., “Denitration of glycerol trinitrate by resting cells and cell extracts of Bacillus thuringiensis/cereus and Enterobacter agglemerans,” Applied and Environmental Microbiology, vol. 61, no. 7, pp. 2548–2553, 1995.
[270]  T. M. Wendt, J. H. Cornell, and A. M. Kaplan, “Microbial degradation of glycerol nitrates,” Applied and Environmental Microbiology, vol. 36, no. 5, pp. 693–699, 1978.
[271]  S. Bhaumik, C. Christodoulatos, G. P. Korfiatis, and B. W. Brodman, “Aerobic and anaerobic biodegradation of nitroglycerin in batch and packed bed bioreactors,” Water Science and Technology, vol. 36, no. 2-3, pp. 139–146, 1997.
[272]  C. Christodoulatos, S. Bhaumik, and B. W. Brodman, “Anaerobic biodegradation of nitroglycerin,” Water Research, vol. 31, no. 6, pp. 1462–1470, 1997.
[273]  C. E. French, S. Nicklin, and N. C. Bruce, “Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2,” Journal of Bacteriology, vol. 178, no. 22, pp. 6623–6627, 1996.
[274]  J. V. Accashian, R. T. Vinopal, B.-J. Kim, and B. F. Smets, “Aerobic growth on nitroglycerin as the sole carbon, nitrogen, and energy source by a mixed bacterial culture,” Applied and Environmental Microbiology, vol. 64, no. 9, pp. 3300–3304, 1998.
[275]  G. F. White, J. R. Snape, and S. Nicklin, “Bacterial biodegradation of glycerol trinitrate,” International Biodeterioration and Biodegradation, vol. 38, no. 2, pp. 77–82, 1996.
[276]  D. S. Blehert, B. G. Fox, and G. H. Chambliss, “Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases,” Journal of Bacteriology, vol. 181, no. 20, pp. 6254–6263, 1999.
[277]  J. R. Snape, N. A. Walkley, A. P. Morby, S. Nicklin, and G. F. White, “Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter,” Journal of Bacteriology, vol. 179, no. 24, pp. 7796–7802, 1997.
[278]  D. S. Blehert, K. Becker, and G. H. Chambliss, “Isolation and characterization of bacteria that degrade nitroglycerin,” in Proceedings of the Tri-Service Environmental Technology Workshop. Enhancing Readiness through Environmental Quality Technology, pp. 197–204, Defense Technical Information Center, Hershey, Pa, USA, May 1996, ADP017715.
[279]  S. J. Marshall and G. F. White, “Complete denitration of nitroglycerin by bacteria isolated from a washwater soakaway,” Applied and Environmental Microbiology, vol. 67, no. 6, pp. 2622–2626, 2001.
[280]  S. Yost, Effects of redox potential and pH on the fate of nitroglycerin in a surface and aquifer soil, M.S. thesis, Louisiana State University, Baton Rouge, La, USA, 2004.
[281]  B. van Aken and J. L. Schnoor, “Evidence of perchlorate (ClO4-) reduction in plant tissues (Poplar tree) using radio-labeled 36ClO4??,” Environmental Science and Technology, vol. 36, no. 12, pp. 2783–2788, 2002.
[282]  G. B. Rikken, A. G. M. Kroon, and C. G. Ginkel, “Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation,” Applied Microbiology and Biotechnology, vol. 45, no. 3, pp. 420–426, 1996.
[283]  J. D. Coates, U. Michaelidou, R. A. Bruce, S. M. O'Connor, J. N. Crespi, and L. A. Achenbach, “Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria,” Applied and Environmental Microbiology, vol. 65, no. 12, pp. 5234–5241, 1999.
[284]  V. N. Korenkov, V. I. Romanenko, S. I. Kuznetsov, and J. V. Voronnov, “Process for purification of industrial waste waters from perchlorates and chlorates,” US patent 3,943,055, 1976.
[285]  W. Wallace, T. Ward, A. Breen, and H. Attaway, “Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes,” Journal of Industrial Microbiology, vol. 16, no. 1, pp. 68–72, 1996.
[286]  R. A. Bruce, L. A. Achenbach, and J. D. Coates, “Reduction of (per)chlorate by a novel organism isolated from paper mill waste,” Environmental Microbiology, vol. 1, no. 4, pp. 319–329, 1999.
[287]  D. C. Herman and W. T. Frankenberger, “Microbial-mediated reduction of perchlorate in groundwater,” Journal of Environmental Quality, vol. 27, no. 4, pp. 750–754, 1998.
[288]  B. E. Logan, H. Zhang, P. Mulvaney, M. G. Milner, I. M. Head, and R. F. Unz, “Kinetics of perchlorate—and chlorate—respiring bacteria,” Applied and Environmental Microbiology, vol. 67, no. 6, pp. 2499–2506, 2001.
[289]  B. C. Okeke, T. Giblin, and W. T. Frankenberger, “Reduction of perchlorate and nitrate by salt tolerant bacteria,” Environmental Pollution, vol. 118, no. 3, pp. 357–363, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133