全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Constructing Entanglers in 2-Players–N-Strategies Quantum Game

DOI: 10.4236/jqis.2015.51003, PP. 16-23

Keywords: Quantum Games, Qubits, Qutrits, quNits, Controlled Entanglement, von Neumann Entropy

Full-Text   Cite this paper   Add to My Lib

Abstract:

In quantum games based on 2-player-N-strategies classical games, each player has a quNit (a normalized vector in an N-dimensional Hilbert space HN) upon which he applies his strategy (a matrix USU(N)). The players draw their payoffs from a state \"\". Here \"\"?and J (both determined by the game’s referee) are respectively an unentangled 2-quNit (pure) state and a unitary operator such that \"\"?is partially entangled. The existence of pure strategy Nash equilibrium in the quantum game is intimately related to the degree of entanglement of \"\". Hence, it is practical to design the entangler J= J(β) to be dependent on a single real parameter β that controls the degree of entanglement of \"\", such that its von-Neumann entropy SN(β) is continuous and obtains any value in \"\". Designing J(β) for N=2 is quite standard. Extension to N>2 is not obvious, and here we suggest an algorithm to achieve it. Such construction provides a special quantum gate that should be a useful tool not only in quantum games but, more generally, as a special gate in manipulating quantum information protocols.

References

[1]  Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, p 26, Fig. 1.13.
[2]  Band, Y.B. and Avishai, Y. (2013) Quantum Mechanics with Application to Nanotechnology and Information Science. Academic Press, Waltham, p 217.
[3]  Goldenberg, L., Vaidman, L. and Wiesner, S. (1999) Quantum Gambling. Physical Review Letters, 82, 3356.
http://dx.doi.org/10.1103/PhysRevLett.82.3356
[4]  Meyer, D. (1999) Quantum Strategies. Physical Review Letters, 82, 1052-1055.
http://dx.doi.org/10.1103/PhysRevLett.82.1052
[5]  Eisert, J., Wilkens, M. and Lewenstein, M. (1999) Quantum Games and Quantum Strategies. Physical Review Letters, 83, 3077-3080.
http://dx.doi.org/10.1103/PhysRevLett.83.3077
[6]  Flitney, A.P. and Abbott, D. (2002) An Introduction to Quantum Game Theory. Fluctuation and Noise Letters, 2, R175-R187. arXiv: quant-ph/0208069.
http://dx.doi.org/10.1142/S0219477502000981
[7]  Piotrowski, E.W. andSlaadkowski, J. (2003) An Invitation to Quantum Game Theory. International Journal of Theoretical Physics, 42, 1089-1099.
http://dx.doi.org/10.1023/A:1025443111388
[8]  Landsburg, S.E. (2004) Quantum Game Theory. Notices of the American Mathematical Society, 51, 394-399.
[9]  Iqbal, A. (2004) Studies in the Theory of Quantum Games. Ph.D thesis, Quaid-i-Azam University, Islamabad, 137 p. arXiv:quant-phys/050317.
[10]  Sharif, P. and Heydari, H. (2014) Quantum Information and Computation, 14, 0295.
[11]  Landsburg, S.E. (2011) Nash Equilibria in Quantum Games. Proceedings of the American Mathematical Society, 139, 4423-4434. arXiv:1110.1351.
[12]  Benjamin, S.C. and Hayden, P.M. (2001) Comment on “Quantum Games and Quantum Strategies”. Physical Review Letters, 87, Article ID: 069801.
http://dx.doi.org/10.1103/PhysRevLett.87.069801
[13]  Du, J., Li, H., Xu, X., Han, R. and Zhou, X. (2002) Entanglement Enhanced Multiplayer Quantum Games. Physics Letters A, 302, 229-233.
http://dx.doi.org/10.1016/S0375-9601(02)01144-1
[14]  Du, J., Xu, X., Li, H., Zhou, X. and Han, R. (2002) Playing Prisoner’s Dilemma with Quantum Rules. Fluctuation and Noise Letters, 2, R189.
http://dx.doi.org/10.1142/S0219477502000993
[15]  Flitney, A.P. and Abbott, D. (2003) Advantage of a Quantum Player over a Classical One in 2 × 2 Quantum Games. Proceedings of the Royal Society A, 459, 2463-2474.
http://dx.doi.org/10.1098/rspa.2003.1136
[16]  Flitney, A.P. and Hollenberg, L.C.L. (2007) Nash Equilibria in Quantum Games with Generalized Two-Parameter Strategies. Physics Letters A, 363, 381-388.
http://dx.doi.org/10.1016/j.physleta.2006.11.044
[17]  Avishai, Y. (2012) Some Topics in Quantum Games. MA Thesis in Economics, Ben Gurion University, Beersheba, 96 p. arXiv:1306.0284. (Submitted on August 2012 to the Faculty of Social Science and Humanities at the Ben Gurion University).
[18]  Osborne, M.J. and Rubinstein, A. (2011) A Course in Game Theory. The MIT Press, Version: 2011-1-19. Cambridge, Massachusetts, London, England.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133