全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transition Metal Doped MnOx-CeO2 Catalysts by Ultrasonic Immersing for Selective Catalytic Reduction of NO with NH3 at Low Temperature

DOI: 10.4236/mrc.2015.41002, PP. 13-19

Keywords: Mn-Based Catalysts, Ultrasonic Immersing Method, Selective Catalytic Reduction, Sulfur Tolerance

Full-Text   Cite this paper   Add to My Lib

Abstract:

Transition metals doped Mn-based catalysts were prepared via ultrasonic immersing method for the selective catalytic reduction (SCR) of NOx from fuel gas. The Catalysts’ DeNOx efficiency and tolerance to sulfur were investigated in the paper. XRD results demonstrate high dispersion of Mn, Ce and M (Pr, Y, Zr, W) elements on TiO2 carrier, which is favor for reduction of active materials content. Mn-Ce-W catalyst presents uniform particle size about 500 nm to 800 nm from SEM pictures and shows the best NOx conversion of 93.2% at 200°;C and 98.4% at 250°;C, respectively. Sulfur tolerance analysis indicated that transition metals M can improve the catalysts’ performance when 0.01% SO2 exists in the fuel gas, because metal doping into the Mn-Ce catalyst can inhibit the sulfate deposition, especially metal sulfate, on the catalyst, which can be seen from the Fourier infrared spectrum.

References

[1]  Qi, G., Yang, R.T. and Chang, R. (2004) MnOx-CeO2 Mixed Oxides Prepared by Co-Precipitation for Selective Catalytic Reduction of NO with NH3 at Low Temperatures. Applied Catalysis B, 51, 93-106.
http://dx.doi.org/10.1016/j.apcatb.2004.01.023
[2]  Carja, G., Kameshima, Y., Okada, K., et al. (2007) Mn-Ce/ZSM5 as a New Superior Catalyst for NO Reduction with NH3. Applied Catalysis B, 73, 60-64.
http://dx.doi.org/10.1016/j.apcatb.2006.06.003
[3]  Tang, X.L., Hao, J.M., Yi, H.H., et al. (2007) Low-Temperature SCR of NO with NH3 over AC/C Supported Manganese-Based Monolithic Catalysts. Catalysis Today, 126, 406-411.
http://dx.doi.org/10.1016/j.cattod.2007.06.013
[4]  Wu, Z.B., Jin, R.B., Liu, Y. and Wang, H.Q. (2008) Ceria Modified MnOx/TiO2 as a Superior Catalyst for NO Reduction with NH3 at Low-Temperture. Catalysis Communications, 9, 2217-2220.
[5]  Uddin, A.M., Ishibe, K., et al. (2007) Effects of SO2 on NO Adsorption and NO2 Formation over TiO2 Low-Tempe- rature SCR Catalyst. Industrial & Engineering Chemistry Research, 46, 1672.
[6]  Wu, D.W., Zhang, Q.L., Lin, T., et al. (2011) CexTi1-xO2 Supported Manganese-Based Catalsyt: Perparation and Catalytic Performance for Selective Reduction of NO with NH3 at Lower Temperature. Chinese Journal of Inorganic Chemistry, 27, 53.
[7]  Maitarad, P., Zhang, D.S., Gao, R.H., et al. (2013) Combination of Experimental and Theoretical Investigations of MnOx/Ce0.9Zr0.1O2 Nanorods for Selective Catalytic Reduction of NO with Ammonia. Journal of Physical Chemistry C, 117, 9999-10006.
http://dx.doi.org/10.1021/jp400504m
[8]  Othman, I, Mohamed, R.M. and Ibrahem, F.M. (2007) Study of Photocatalytic Oxidation of Indigo Carmine Dye on Mn-Supported TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 189, 82-83.
http://dx.doi.org/10.1016/j.jphotochem.2007.01.010
[9]  Topsoe, N.Y. (1994) Mechanism of the Selective Catalytic Reduction of Nitric Oxide by Ammonia Elucidated by in Situ On-Line Fourier Transform Infrared Spectroscopy. Science, 265, 1217-1219.
http://dx.doi.org/10.1126/science.265.5176.1217
[10]  Wu, Z., Jiang, B., Liu, Y., Wang, H. and Jin, R. (2007) DRIFT Study of Manganese/Titania-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NO with NH3. Environmental Science and Technology Journal, 41, 5812-5817.
http://dx.doi.org/10.1021/es0700350

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133