The essential oils of seeds of Salvia verbenaca, Salvia officinalis, and Salvia sclarea were obtained by hydrodistillation and analyzed by gas chromatography (GC) and GC-mass spectrometry. The oil yields (w/w) were 0.050, 0.047, and 0.045% in S. verbenaca, S. sclarea, and S. officinalis, respectively. Seventy-five compounds were identified. The essential oil composition of S. verbenaca seeds showed that over 57% of the detected compounds were oxygenated monoterpenes followed by sesquiterpenes (24.04%) and labdane type diterpenes (5.61%). The main essential oil constituents were camphor (38.94%), caryophyllene oxide (7.28%), and 13-epi-manool (5.61%), while those of essential oil of S. officinalis were α-thujone (14.77%), camphor (13.08%), and 1,8-cineole (6.66%). In samples of S. sclarea, essential oil consists mainly of linalool (24.25%), α-thujene (7.48%), linalyl acetate (6.90%), germacrene-D (5.88%), bicyclogermacrene (4.29%), and α-copaene (4.08%). This variability leads to a large range of naturally occurring volatile compounds with valuable industrial and pharmaceutical outlets. 1. Introduction The genus Salvia (Lamiaceae) comprises nearly 900 species widely spread throughout the world, which display marked morphological and genetic variations according to their geographical origin [1]. Several Salvia species, namely, Salvia officinalis, Salvia sclarea, and Salvia verbenaca, are widely used in folk medicine [2]. Potential therapeutic activities of these Salvia species are due to their essential oils [3], since these species are known to possess antioxidant, antimicrobial, antifungal, and aromatic properties [4]. Chemical composition of essential oils reveals differences among these Salvia species [5–7]. Numerous investigations on Salvia officinalis show that 1,8-cineole, α-thujone, β-thujone, and camphor are the main compounds of the essential oil [8–10]. Linalool, linalyl acetate, and germacrene-D characterize S. sclarea plants [11]. Salvia species also display great intraspecific essential oil variations according to geographical origin, since sabinene, cadinene, terpinen-4-ol, and pinene are shown to be typical compounds of S. verbenaca essential oil originated from Saudi Arabia [4], while β-phellandrene and ( )-caryophyllene prevail in essential oil from Greece [7]. In Tunisia, S. verbenaca essential oil shows variations of composition according to the region origin [12, 13] and in respect to the studied plant part [14]. These numerous studies are focused on aerial parts of these species, while works interested in seeds are scanty in spite of
References
[1]
I. C. Hedge, A Global Survey of the Biogeography of Labiatae, Royal Botanical Gardens, Kew, UK, 1992.
[2]
G. Penso, Index Plantarum Medicinalium Totius Mundi Eorumque Synonymorum, OEMF, Milano, Italy, 1983.
[3]
A. Y. Leung and S. Foster, Encyclopedia of Common Natural Ingredients Used in Food, Drugs and Cosmetics, John Wiley & Sons, New York, NY, USA, 2nd edition, 1996.
[4]
T. A. Al-Howiriny, “Chemical composition and antimicrobial activity of essential oil of Salvia verbenaca,” Biotechnology, vol. 1, pp. 45–48, 2002.
[5]
F. Chialva and F. Monguzzi, “Composition of the essential oils of five Salvia species,” Journal of Essential Oil Research, vol. 4, pp. 447–455, 1992.
[6]
M. E. Torres, A. Velasco-Negueruela, M. J. Pérez-Alonso, and M. G. Pinilla, “Volatile constituents of two Salvia species grown wild in Spain,” Journal of Essential Oil Research, vol. 9, no. 1, pp. 27–33, 1997.
[7]
D. Pitarokili, O. Tzakou, and A. Loukis, “Essential oil composition of Salvia verticillata, S. verbenaca, S. glutinosa and S. candidissima growing wild in Greece,” Flavour and Fragrance Journal, vol. 21, no. 4, pp. 670–673, 2006.
[8]
V. Radulescu, S. Chiliment, and E. Oprea, “Capillary gas chromatography-mass spectrometry of volatile and semi-volatile compounds of Salvia officinalis,” Journal of Chromatography A, vol. 1027, no. 1-2, pp. 121–126, 2004.
[9]
P. Avato, I. M. Fortunato, C. Ruta, and R. D’Elia, “Glandular hairs and essential oils in micropropagated plants of Salvia officinalis L.,” Plant Science, vol. 169, no. 1, pp. 29–36, 2005.
[10]
S. Marie, M. Maksimovic, and M. Milos, “The impact of the locality altitudes and stages of development on the volatile constituents of Salvia officinalis L. from Bosnia and Herzegovina,” Journal of Essential Oil Research, vol. 18, no. 2, pp. 178–180, 2006.
[11]
A. Carrubba, R. La Torre, R. Piccaglia, and M. Marotti, “Characterization of an Italian biotype of clary sage (Salvia sclarea L.) grown in a semi-arid Mediterranean environment,” Flavour and Fragrance Journal, vol. 17, no. 3, pp. 191–194, 2002.
[12]
M. B. Taarit, K. Msaada, and B. Marzouk, “Chemical composition of fatty acids and essential oils of Salvia verbenaca L. Seeds from Tunisia,” Agrochimica, vol. 54, no. 3, pp. 129–141, 2010.
[13]
M. B. Taarit, K. Msaada, K. Hosni, T. Chahed, and B. Marzouk, “Essential oil composition of Salvia verbenaca L. growing wild in Tunisia,” Journal of Food Biochemistry, vol. 34, no. 1, pp. 142–151, 2010.
[14]
M. Ben Taarit, K. Msaada, K. Hosni, N. Ben Amor, B. Marzouk, and M. E. Kchouk, “Chemical composition of the essential oils obtained from the leaves, fruits and stems of Salvia verbenaca L. from the northeast region of Tunisia,” Journal of Essential Oil Research, vol. 22, no. 5, pp. 449–453, 2010.
[15]
R. Ayerza, W. Coates, and M. Lauria, “Chia seed (Salvia hispanica L.) as an ω-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics,” Poultry Science, vol. 81, no. 6, pp. 826–837, 2002.
[16]
B. Heuer, Z. Yaniv, and I. Ravina, “Effect of late salinization of chia (Salvia hispanica), stock (Matthiola tricuspidata) and evening primrose (Oenothera biennis) on their oil content and quality,” Industrial Crops and Products, vol. 15, no. 2, pp. 163–167, 2002.
[17]
J. E. Kinsella, K. S. Broughton, and J. W. Whelan, “Dietary unsaturated fatty acids: interactions and possible needs in relation to eicosanoid synthesis,” Journal of Nutritional Biochemistry, vol. 1, no. 3, pp. 123–141, 1990.
[18]
I. C. Hedge and L. Salvia, Flora of Turkey and the East Aegean Islands, Edinburgh University Press, Edinburgh, UK, 1982.
[19]
A. Estilai, A. Hashemi, and K. Truman, “Chromosome number and meiotic behavior of cultivated chia, Salvia hispanica (Lamiaceae),” Hortscience, vol. 25, pp. 1646–1647, 1990.
[20]
T. Baytop, Türkiye’de bitkilerle tedavi (ge?miste ve bugün), Bask?, Nobel T?p Kitapevleri, ?apa-Ystanbul, Konak-Yzmir, S?hh?ye-Ankara, Turkey, 1999.
[21]
R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, Allured, Carol Stream, Ill, USA, 2001.
[22]
Statsoft, STATISTICA for Windows (Computer Program Electronic Manual), StatSoft, Tulsa, Okla, USA, 1998.
[23]
S. K. Lattoo, R. S. Dhar, A. K. Dhar, P. R. Sharma, and S. G. Agarwal, “Dynamics of essential oil biosynthesis in relation to inflorescence and glandular ontogeny in Salvia sclarea,” Flavour and Fragrance Journal, vol. 21, no. 5, pp. 817–821, 2006.
[24]
M. Ben Taarit, K. Msaada, K. Hosni, M. Hammami, M. E. Kchouk, and B. Marzouk, “Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions,” Industrial Crops and Products, vol. 30, no. 3, pp. 333–337, 2009.
[25]
P. Magiatis, A. L. Skaltsounis, I. Chinou, and S. Haroutounian, “Chemical composition and in vitro antimicrobial activity of the essential oils of three Greek Achillea species,” Zeitschrift für Naturforschung, vol. 57, pp. 287–290, 2002.
[26]
C. Bougatsos, O. Ngassapa, D. K. B. Runyoro, and I. B. Chinou, “Chemical composition and in vitro antimicrobial activity of the essential oils of two Helichrysum species from Tanzania,” Zeitschrift fur Naturforschung, vol. 59, no. 5-6, pp. 368–372, 2004.
[27]
V. Jalsenjak, S. Peljnjak, and D. Ku?trak, “Microcapsules of sage oil: essential oils content and antimicrobial activity,” Pharmazie, vol. 42, no. 6, pp. 419–420, 1987.
[28]
M. Miyazawa, H. Watanabe, K. Umemoto, and H. Kameoka, “Inhibition of acetylcholinesterase activity by essential oils of Mentha species,” Journal of Agricultural and Food Chemistry, vol. 46, no. 9, pp. 3431–3434, 1998.
[29]
H. J. M. Gijsen, J. B. P. A. Wijnberg, G. A. Stork, A. de Groot, M. A. De Waard, and J. G. M. Van Nistelrooy, “The synthesis of mono- and dihydroxy aromadendrane sesquiterpenes, starting from natural (+)-aromadendrene-III,” Tetrahedron, vol. 48, no. 12, pp. 2465–2476, 1992.
[30]
S. L. da Silva, P. M. Figueiredo, and T. Yano, “Cytotoxic evaluation of essential oil from Zanthoxylum rhoifolium Lam. leaves,” Acta Amazonica, vol. 37, no. 2, pp. 281–286, 2007.
[31]
K. Dimas, C. Demetzos, M. Marsellos, R. Sotiriadou, M. Malamas, and D. Kokkinopoulos, “Cytotoxic activity of labdane type diterpenes against human leukemic cell lines in vitro,” Planta Medica, vol. 64, no. 3, pp. 208–211, 1998.
[32]
J. Bruneton, Pharmacognosy, Phytochemistry, Medicinal Plants, Tech. & Doc. Lavoisier, Paris, France, 1999.
[33]
D. Lorenzo, D. Paz, P. Davies et al., “Characterization and enantiomeric distribution of some terpenes in the essential oil of a Uruguayan biotype of Salvia sclarea L,” Flavour and Fragrance Journal, vol. 19, no. 4, pp. 303–307, 2004.
[34]
A. T. Peana, M. D. L. Moretti, and C. Juliano, “Chemical composition and antimicrobial action of the essential oils of Salvia desoleana and S. sclarea,” Planta Medica, vol. 65, no. 8, pp. 752–754, 1999.
[35]
E. Pichersky, J. P. Noel, and N. Dudareva, “Biosynthesis of plant volatiles: nature’s diversity and ingenuity,” Science, vol. 311, no. 5762, pp. 808–811, 2006.