全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Scalar Compromise Equilibrium for N-Person Prescriptive Games

DOI: 10.4236/ns.2014.613098, PP. 1103-1107

Keywords: Game Theory, Equilibria, Scalar Equilibrium, Compromise Equilibrium, Scalar Transformation, Prescriptive Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

A scalar equilibrium (SE) is defined for n-person prescriptive games in normal form. When a decision criterion (notion of rationality) is either agreed upon by the players or prescribed by an external arbiter, the resulting decision process is modeled by a suitable scalar transformation (utility function). Each n-tuple of von Neumann-Morgenstern utilities is transformed into a nonnegative scalar value between 0 and 1. Any n-tuple yielding a largest scalar value determines an SE, which is always a pure strategy profile. SEs can be computed much faster than Nash equilibria, for example; and the decision criterion need not be based on the players’ selfishness. To illustrate the SE, we define a compromise equilibrium, establish its Pareto optimality, and present examples comparing it to other solution concepts.

References

[1]  Aumann, R. (1985) What Is Game Theory Trying to Accomplish? In: Arrow, K. and Honkapohja, S., Eds., Frontiers of Economics, Basil Blackwell, Oxford, 5-46.
[2]  Maschler, M., Solan, E. and Zamir, S. (2013) Game Theory. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511794216
[3]  Myerson, R. (1991) Game Theory: Analysis of Conflict. Harvard University Press, Cambridge.
[4]  Nash, J. (1950) Equilibrium Points in N-Person Games. Proceedings of the National Academy of Sciences, 36, 48-49.
http://dx.doi.org/10.1017/CBO9780511794216
[5]  Nash, J. (1951) Non-Cooperative Games. The Annals of Mathematics, 54, 286-295.
http://dx.doi.org/10.2307/1969529
[6]  Poundstone, W. (2011) Prisoner’s Dilemma. Random House, New York.
[7]  Beckenkamp, M. (2006) A Game-Theoretic Taxonomy of Social Dilemmas. Central European Journal of Operations Research, 14, 337-353.
http://dx.doi.org/10.1007/s10100-006-0008-5
[8]  Rubinstein, A. (1991) Comments on the Interpretation of Game Theory. Econometrica, 59, 909-924.
http://www.jstor.org/stable/2938166
http://dx.doi.org/10.2307/2938166
[9]  Daskalakis, C., Goldberg, P. and Papadimitriou, C. (2009) The Complexity of Computing a Nash Equilibrium. SIAM Journal on Computing, 39, 195-209.
http://dx.doi.org/10.1145/1461928.1461951
[10]  Barbera, S., Hammond, P. and Seidl, C. (1999) Handbook of Utility Theory: Volume 1 Principles. Springer, New York.
[11]  Barbera, S., Hammond, P. and Seidl, C. (2004) Handbook of Utility Theory: Volume 2 Extensions. Springer, New York. http://dx.doi.org/10.1007/978-1-4020-7964-1
[12]  Rabin, M. (1993) Incorporating Fairness into Game Theory and Economics. The American Economic Review, 83, 1281-1302.
[13]  Korth, C. (2009) Fairness in Bargaining and Markets. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-3-642-02253-1
[14]  Ehrgott, M. (2005) Multicriteria Optimization. Springer-Verlag, New York.
[15]  Harsanyi, J. and Selten, R. (1988) A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge.
[16]  Cooper, R. (1998) Coordination Games. Cambridge University Press, Cambridge.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133