For C*-algebras A and B, the constant involved in
the canonical embedding of into is shown to be . We also consider the
corresponding operator space version of this embedding. Ideal structure of is obtained in case A or B has only finitely many closed ideals.
References
[1]
Schatten, R. (1943) On the Direct Product of Banach Spaces. Transactions of the American Mathematical Society, 53, 195-217. http://dx.doi.org/10.1090/S0002-9947-1943-0007568-7
[2]
Kumar, A. and Sinclair, A.M. (1998) Equivalence of Norms on Operator Space Tensor Products of C*-Algebras. Transactions of the American Mathematical Society, 350, 2033-2048. http://dx.doi.org/10.1090/S0002-9947-98-02190-4
[3]
Haagerup, U. and Musat, M. (2008) The Effros-Ruan Conjecture for Bilinear Forms on C*-Algebras. Inventiones Mathematicae, 174, 139-163. http://dx.doi.org/10.1007/s00222-008-0137-7
[4]
Jain, R. and Kumar, A. (2011) Operator Space Projective Tensor Product: Embedding into Second Dual and Ideal Structure. Available on arXiv:1106.2644v1.
[5]
Blecher, D.P. and LeMerdy, C. (2004) Operator Algebras and Their Modules—An Operator Space Approach. London Mathematical Society Monographs, New Series, The Clarendon Press, Oxford University Press, Oxford.
[6]
Ryan, R. (2002) Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics, Springer-Verlag, Berlin, Heidelberg. http://dx.doi.org/10.1007/978-1-4471-3903-4
[7]
Haagerup, U. (1985) The Grothendieck Inequality for Bilinear Forms on C*-Algebras. Advances in Mathematics, 56, 93-116. http://dx.doi.org/10.1016/0001-8708(85)90026-X
[8]
Lance, C. (1973) On Nuclear C*-Algebras. Journal of Functional Analysis, 12, 157-176. http://dx.doi.org/10.1016/0022-1236(73)90021-9
[9]
Archbold, R.J. and Batty, C.J.K. (1980) C*-Tensor Norms and Slice Maps. Journal of the London Mathematical Society, 22, 127-138. http://dx.doi.org/10.1112/jlms/s2-22.1.127
[10]
Effros, E.G. and Ruan, Z-J. (2000) Operator Spaces. Claredon Press, Oxford.
[11]
Jain, R. and Kumar, A. (2008) Operator Space Tensor Products of C*-Algebras. Mathematische Zeitschrift, 260, 805-811. http://dx.doi.org/10.1007/s00209-008-0301-1
[12]
Kumar, A. (2001) Operator Space Projective Tensor Product of C*-Algebras. Mathematische Zeitschrift, 237, 211-217. http://dx.doi.org/10.1007/PL00004864
[13]
Itoh, T. (2000) Completely Positive Decompositions from Duals of C*-Algebras to Von Neumann Algebras. Mathematica Japonica, 51, 89-98.
[14]
Effros, E.G. and Ruan, Z-J. (1992) On Approximation Properties for Opertaor Spaces. International Journal of Mathematics, 1, 163-187. http://dx.doi.org/10.1142/S0129167X90000113
[15]
Lin, H. (1988) Ideals of Multiplier Algebras of Simple AF C*-Algebras. Proceedings of the American Mathematical Society, 104, 239-244.
[16]
Archbold, R.J., et al. (1997) Ideal Space of the Haagerup Tensor Product of C*-Algebras. International Journal of Mathematics, 8, 1-29. http://dx.doi.org/10.1142/S0129167X97000020
[17]
Allen, S.D., Sinclair, A.M. and Smith, R.R. (1993) The Ideal Structure of the Haagerup Tensor Product of C*-Algebras, Journal Für die Reine und Angewandte Mathematik, 442, 111-148.
[18]
Smith, R.R. (1991) Completely Bounded Module Maps and the Haagerup Tensor Product. Journal of Functional Analysis, 102, 156-175. http://dx.doi.org/10.1016/0022-1236(91)90139-V
[19]
Jain, R. and Kumar, A. (2011) Ideals in Operator Space Projective Tensor Products of C*-Algebras. Journal of the Australian Mathematical Society, 91, 275-288. http://dx.doi.org/10.1017/S1446788711001479
[20]
Bonsall, F.F. and Duncan, J. (1973) Complete Normed Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin, Heidelberg, New York. http://dx.doi.org/10.1007/978-3-642-65669-9
[21]
Wassermann, S. (1975) Tensor Products of *-Automorphisms of C*-Algbras. Bulletin London Mathematical Society, 7, 65-70. http://dx.doi.org/10.1112/blms/7.1.65
[22]
Clouatre, R. (2014) Completely Bounded Isomorphism of Operator Algebras. Available on arXiv:1401.0748v2.
[23]
Dixmier, J. (1977) Von Neumann Algebras. North Holland Publishing Company, Amsterdam.