In order to assess chicken T cell-mediated responses after immune stress, 200 two-week-old chickens were randomly divided into control group(C) and treatment groups (T1 and T2). The live I-type of Newcastle disease vaccine (ND) was taken as the source of immunological stress. The chickens in group (T2) were injected with overdose of live I-type Newcastle disease vaccine. After vaccination, the dynamic changes of CD4+, CD8+T cells on thymus were detected by immunohisto-chemistry. The ultra-structure of T cells on thymus of the chickens in group (T2) was observed by electron microscopic. The result showed: (1) After immune stress, from day 1 to day 5, the number of the CD4+T cells significantly declined and reached the bottom at day 5, but the number of the CD8+T cells increased dramatically and peaked at day 5. (2) After immune stress, from day 1 to day 5, part of T cells of chicken thymus came with apoptotic and pathological changes of putrescence continually. These results underscore: the immune stress can cause transient immune adjustment. These changes for chickens were the self-protection mechanism of immune system to adapt to survival and avoid immune disorder.
References
[1]
Dalgaard, T.S., et al. (2010) Flow Cytometric Assessment of Chicken T Cell-Mediated Immune Responses after Newcastle Disease Virus Vaccination and Challenge. Vaccine, 28, 4506-4514. http://dx.doi.org/10.1016/j.vaccine.2010.04.044
[2]
Dominguez-Gerpe, L. and Rey-Mendez, M. (2000) Role of Pre-T Cells and Chemoattractants on Stress-Associated Thymus Involution. Scandinavian Journal of Immunology, 52, 470-476.
[3]
Mast, J., et al. (2006) Vaccination of Chicken Embryos with Escape Mutants of La Sota Newcastle Disease Virus Induces a Protective Immune Response. Vaccine, 24, 1756-1765. http://dx.doi.org/10.1016/j.vaccine.2005.10.020
[4]
Knueppel, D., et al. (2010) Impact of Vaccination against Chicken Newcastle Disease on Food Intake and Food Security in Rural Households in Tanzania. Food and Nutrition Bulletin, 1, 31, 436-445.
[5]
Mansoori, B. and Modirsanei, M. (2012) Effects of Dietary Tannic Acid and Vaccination on the Course of Coccidiosis in Experimentally Challenged Broiler Chicken. Veterinary Parasitology, 187, 119-122. http://dx.doi.org/10.1016/j.vetpar.2011.12.016
[6]
Gao, W.W and Ren, J.Y. (2001) The Influence of Experimental Immunological Stress on Immunological Function of Chicken. Journal of Shanxi Agricultural Sciences, 29, 80-84.
[7]
Tian, W.X. (2000) Effect of Dynamic Changes of Antibody Producing Cells of Immune Organs and Tissues of Experemental Immunologic Stress Chickens. Journal of Shanxi Agricultural University, 3, 232-235.
Henning, J., et al. (2009) Evaluation of Strategies to Improve Village Chicken Production: Controlled Field Trials to Assess Effects of Newcastle Disease Vaccination and Altered Chick Rearing in Myanmar [Corrected]. Preventive Veterinary Medicine, 90, 17-30. http://dx.doi.org/10.1016/j.prevetmed.2009.04.007
[10]
Xu, T., Gao, W. and Ren, J.Y. (2002) Effects of Experimental Immunologic Stress on Blood Hormone and Immunity in Chickens. Acta Agriculturae Boreali-Sinica, 17, 114-118.
[11]
Lv, Q., Zhang, S. and Zhao, R. (2008) Transportation Stress Alters the Expression of Immunoregulatory Cytokines in the Porcine Thymus. The Veterinary Journal, 187, 229-233. http://dx.doi.org/10.1016/j.tvjl.2009.12.004
[12]
Frazer, I.H. and Mackay, I.R. (1985) A Graphical Presentation of Counts of T Lymphocyte Subpopulations and Th-Ts Ratios. Pathology, 17, 62-63. http://dx.doi.org/10.3109/00313028509063726
[13]
Franchini, A., Marchesini, E. and Ottaviani, E. (2004) Corticosterone 21-Acetate in Vivo Induces Acute Stress in Chicken Thymus: Cell Proliferation, Apoptosis and Cytokine Responses. Histology and Histopathology, 19, 693-699.
[14]
Dhabhar, F.S. and McEwen, B.S. (1999) Enhancing versus Suppressive Effects of Stress Hormones on Skin Immune Function. Proceedings of the National Academy of Sciences of the USA, 96, 1059-1064. http://dx.doi.org/10.1073/pnas.96.3.1059