全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Heat Generation and Thermal Radiation Effects over a Stretching Sheet in a Micropolar Fluid

DOI: 10.5402/2012/795814

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effects of radiation and heat generation on steady thermal boundary layer flow induced by a linearly stretching sheet immersed in an incompressible micropolar fluid with constant surface temperature are investigated. Similarity transformation is employed to transform the governing partial differential equations into ordinary ones, which are then solved numerically using the Runge-Kutta fourth order along shooting method. Results for the local Nusselt number as well as the temperature profiles are presented for different values of the governing parameters. It is observed that the velocity increases with an increase in the material parameter. It is seen that the temperature profile is influenced considerably and increases when the value of heat generation parameter increases along the boundary layer. Also, the temperature distribution of the fluid increases with an increase in the radiation parameter. Comparisons with previously published work are performed and the results are found to be in very good agreement. 1. Introduction Flow of a viscous fluid past a stretching sheet is a classical problem in fluid dynamics. The development of boundary layer flow induced solely by a stretching sheet was first studied by Crane [1] who first obtained an elegant analytical solution to the boundary layer equations for the problem of steady two dimensional flow due to a stretching surface in a quiescent incompressible fluid. Flow and heat transfer characteristics due to a stretching sheet in a stationary fluid occur in a number of industrial manufacturing processes and include both metal and polymer sheets, for example, the cooling of an infinite metallic plate in a cooling bath, the boundary layer along material handling conveyers, the aerodynamic extrusion of plastic sheets, paper production, metal spinning, and drawing plastic films. The quality of the final product depends on the rate of heat transfer at the stretching surface. This problem was then extended by P. S. Gupta and A. S. Gupta [2] to a permeable surface. The flow problem due to a linearly stretching sheet belongs to a class of exact solutions of the Navier-Stokes equations. Thus, the exact solutions reported by Crane [1] and P. S. Gupta and A. S. Gupta [2] are also the exact solutions to the Navier-Stokes equations. The heat transfer aspects of similar problems were studied by Grubka and Bobba [3], Chen and Char [4], Dutta et al. [5], Ali [6, 7], Afzal and Varshney [8], Afzal [9], and many others. On the other hand, the effects of buoyancy force on the development of velocity and thermal boundary

References

[1]  L. J. Crane, “Flow past a stretching plate,” Zeitschrift für Angewandte Mathematik und Physik, vol. 21, no. 4, pp. 645–647, 1970.
[2]  P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” The Canadian Journal of Chemical Engineering, vol. 55, no. 6, pp. 744–746, 1977.
[3]  L. J. Grubka and K. M. Bobba, “Heat transfer characteristics of a continuous, stretching surface with variable temperature,” Journal of Heat Transfer, vol. 107, no. 1, pp. 248–250, 1985.
[4]  C. K. Chen and M. I. Char, “Heat transfer of a continuous, stretching surface with suction or blowing,” Journal of Mathematical Analysis and Applications, vol. 135, no. 2, pp. 568–580, 1988.
[5]  B. K. Dutta, P. Roy, and A. S. Gupta, “Temperature field in flow over a stretching sheet with uniform heat flux,” International Communications in Heat and Mass Transfer, vol. 12, no. 1, pp. 89–94, 1985.
[6]  M. E. Ali, “Heat transfer characteristics of a continuous stretching surface,” Heat and Mass Transfer, vol. 29, no. 4, pp. 227–234, 1994.
[7]  M. E. Ali, “On thermal boundary layer on a power-law stretched surface with suction or injection,” International Journal of Heat and Fluid Flow, vol. 16, no. 4, pp. 280–290, 1995.
[8]  N. Afzal and I. S. Varshney, “The cooling of a low heat resistance stretching sheet moving through a fluid,” W?rme- und Stoffübertragung, vol. 14, no. 4, pp. 289–293, 1980.
[9]  N. Afzal, “Heat transfer from a stretching surface,” International Journal of Heat and Mass Transfer, vol. 36, no. 4, pp. 1128–1131, 1993.
[10]  C. H. Chen, “Laminar mixed convection adjacent to vertical, continuously stretching sheets,” Heat and Mass Transfer, vol. 33, no. 5-6, pp. 471–476, 1998.
[11]  M. Ali and F. Al-Yousef, “Laminar mixed convection from a continuously moving vertical surface with suction or injection,” Heat and Mass Transfer, vol. 33, no. 4, pp. 301–306, 1998.
[12]  J. E. Daskalakis, “Free convection effects in the boundary layer along a vertically stretching flat surface,” Canadian Journal of Physics, vol. 70, pp. 1253–1260, 1993.
[13]  M. K. Partha, P. V. S. N. Murthy, and G. P. Rajasekhar, “Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface,” Heat and Mass Transfer, vol. 41, no. 4, pp. 360–366, 2005.
[14]  M. Abd El-Aziz, “Temperature dependent viscosity and thermal conductivity effects on combined heat and mass transfer in MHD three-dimensional flow over a stretching surface with Ohmic heating,” Meccanica, vol. 42, no. 4, pp. 375–386, 2007.
[15]  T. R. Mahapatra, S. Dholey, and A. S. Gupta, “Momentum and heat transfer in the magnetohydrodynamic stagnation-point flow of a viscoelastic fluid toward a stretching surface,” Meccanica, vol. 42, no. 3, pp. 263–272, 2006.
[16]  A. Ishak, R. Nazar, and I. Pop, “Unsteady mixed convection boundary layer flow due to a stretching vertical surface,” Arabian Journal for Science and Engineering, vol. 31, no. 2, pp. 165–182, 2006.
[17]  A. Ishak, R. Nazar, and I. Pop, “Magnetohydrodynamic stagnation point flow towards a stretching vertical sheet,” Magnetohydrodynamics, vol. 43, no. 1, pp. 83–98, 2006.
[18]  A. Ishak, R. Nazar, and I. Pop, “Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet,” Meccanica, vol. 41, no. 5, pp. 509–518, 2006.
[19]  A. Ishak, R. Nazar, and I. Pop, “Mixed convection on the stagnation point flow toward a vertical, continuously stretching sheet,” Journal of Heat Transfer, vol. 129, no. 8, pp. 1087–1090, 2007.
[20]  A. Ishak, R. Nazar, and I. Pop, “Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet,” Heat and Mass Transfer, vol. 44, no. 8, pp. 921–927, 2008.
[21]  T. C. Chiam, “Micropolar fluid flow over a stretching sheet,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 62, pp. 565–568, 1982.
[22]  M. W. Heruska, L. T. Watson, and K. K. Sankara, “Micropolar flow past a porous stretching sheet,” Computers and Fluids, vol. 14, no. 2, pp. 117–129, 1986.
[23]  R. S. Agarwal, R. Bhargava, and A. V. S. Balaji, “Finite element solution of flow and heat transfer of a micropolar fluid over a stretching sheet,” International Journal of Engineering Science, vol. 27, no. 11, pp. 1421–1428, 1989.
[24]  I. A. Hassanien and R. S. R. Gorla, “Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing,” Acta Mechanica, vol. 84, no. 1–4, pp. 191–199, 1990.
[25]  N. A. Kelson and A. Desseaux, “Effect of surface conditions on flow of a micropolar fluid driven by a porous stretching sheet,” International Journal of Engineering Science, vol. 39, no. 16, pp. 1881–1897, 2001.
[26]  N. A. Kelson and T. W. Farrell, “Micropolar flow over a porous stretching sheet with strong suction or injection,” International Communications in Heat and Mass Transfer, vol. 28, no. 4, pp. 479–488, 2001.
[27]  R. Nazar, N. Amin, D. Filip, and I. Pop, “Stagnation point flow of a micropolar fluid towards a stretching sheet,” International Journal of Non-Linear Mechanics, vol. 39, no. 7, pp. 1227–1235, 2004.
[28]  T. Hayat, Z. Abbas, and T. Javed, “Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet,” Physics Letters A, vol. 372, no. 5, pp. 637–647, 2008.
[29]  G. Ahmadi, “Self-similar solution of imcompressible micropolar boundary layer flow over a semi-infinite plate,” International Journal of Engineering Science, vol. 14, no. 7, pp. 639–646, 1976.
[30]  M. Q. Brewster, Thermal Radiative Transfer Properties, Wiley, New York, NY, USA, 1992.
[31]  M. K. Jain, S. R. K. Iyengar, and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, Wiley Eastern, New Delhi, India, 1985.
[32]  A. Ishak, “Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect,” Meccanica, vol. 45, no. 3, pp. 367–373, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133