%0 Journal Article %T Heat Generation and Thermal Radiation Effects over a Stretching Sheet in a Micropolar Fluid %A M. Gnaneswara Reddy %J ISRN Thermodynamics %D 2012 %R 10.5402/2012/795814 %X The effects of radiation and heat generation on steady thermal boundary layer flow induced by a linearly stretching sheet immersed in an incompressible micropolar fluid with constant surface temperature are investigated. Similarity transformation is employed to transform the governing partial differential equations into ordinary ones, which are then solved numerically using the Runge-Kutta fourth order along shooting method. Results for the local Nusselt number as well as the temperature profiles are presented for different values of the governing parameters. It is observed that the velocity increases with an increase in the material parameter. It is seen that the temperature profile is influenced considerably and increases when the value of heat generation parameter increases along the boundary layer. Also, the temperature distribution of the fluid increases with an increase in the radiation parameter. Comparisons with previously published work are performed and the results are found to be in very good agreement. 1. Introduction Flow of a viscous fluid past a stretching sheet is a classical problem in fluid dynamics. The development of boundary layer flow induced solely by a stretching sheet was first studied by Crane [1] who first obtained an elegant analytical solution to the boundary layer equations for the problem of steady two dimensional flow due to a stretching surface in a quiescent incompressible fluid. Flow and heat transfer characteristics due to a stretching sheet in a stationary fluid occur in a number of industrial manufacturing processes and include both metal and polymer sheets, for example, the cooling of an infinite metallic plate in a cooling bath, the boundary layer along material handling conveyers, the aerodynamic extrusion of plastic sheets, paper production, metal spinning, and drawing plastic films. The quality of the final product depends on the rate of heat transfer at the stretching surface. This problem was then extended by P. S. Gupta and A. S. Gupta [2] to a permeable surface. The flow problem due to a linearly stretching sheet belongs to a class of exact solutions of the Navier-Stokes equations. Thus, the exact solutions reported by Crane [1] and P. S. Gupta and A. S. Gupta [2] are also the exact solutions to the Navier-Stokes equations. The heat transfer aspects of similar problems were studied by Grubka and Bobba [3], Chen and Char [4], Dutta et al. [5], Ali [6, 7], Afzal and Varshney [8], Afzal [9], and many others. On the other hand, the effects of buoyancy force on the development of velocity and thermal boundary %U http://www.hindawi.com/journals/isrn.thermodynamics/2012/795814/