全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Hemodynamic Effects of Combined Focal Cerebral Ischemia and Amyloid Protein Toxicity in a Rat Model: A Functional CT Study

DOI: 10.1371/journal.pone.0100575

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background/Objective Clinical evidence indicates that cerebral ischemia (CI) and a pathological factor of Alzheimer's disease, the β-amyloid (Aβ) protein, can increase the rate of cognitive impairment in the ageing population. Using the CT Perfusion (CTP) functional imaging, we sought to investigate the interaction between CI and the Aβ protein on cerebral hemodynamics. Methods A previously established rat model of CI and Aβ was used for the CTP study. Iodinated contrast was given intravenously, while serial CT images of sixteen axial slices were acquired. Cerebral blood flow (CBF) and blood volume (CBV) parametric maps were co-registered to a rat brain atlas and regions of interest were drawn on the maps. Microvascular alteration was investigated with histopathology. Results CTP results revealed that ipsilateral striatum of Aβ+CI and CI groups showed significantly lower CBF and CBV than control at the acute phase. Striatal CBF and CBV increased significantly at week 1 in the CI and Aβ+CI groups, but not in the Aβ alone or control group. Histopathology showed that average density of dilated microvessels in the ipsilateral striatum in CI and Aβ+CI groups was significantly higher than control at week 1, indicating this could be associated with hyperperfusion and hypervolemia observed from CTP results. Conclusion These results demonstrate that CTP can quantitatively measure the hemodynamic disturbance on CBF and CBV functional maps in a rat model of CI interacting with Aβ.

References

[1]  Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, et al. (2006) The lifetime risk of stroke. Stroke 37: 345–350. doi: 10.1161/01.str.0000199613.38911.b2
[2]  Breteler M (2000) Vascular involvement in cognitive decline and dementia: epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study. Annals of the New York Academy of Sciences 903: 457–465. doi: 10.1111/j.1749-6632.2000.tb06399.x
[3]  Song IU, Kim JS, Kim YI, Eah KY, Lee KS (2007) Clinical significance of silent cerebral infarctions in patients with Alzheimer disease. Cognitive and behavioral neurology 20: 93. doi: 10.1097/wnn.0b013e31805d859e
[4]  Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, et al. (2003) Silent brain infarcts and the risk of dementia and cognitive decline. New England Journal of Medicine 348: 1215–1222. doi: 10.1056/nejmoa022066
[5]  White L (2009) Brain lesions at autopsy in older Japanese-American men as related to cognitive impairment and dementia in the final years of life: a summary report from the Honolulu-Asia aging study. Journal of Alzheimer's Disease 18: 713–725.
[6]  Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, et al. (1997) Brain infarction and the clinical expression of Alzheimer disease. JAMA 277: 813–817. doi: 10.1001/jama.277.10.813
[7]  Heyman A, Fillenbaum GG, Welsh-Bohmer KA, Gearing M, Mirra SS, et al. (1998) Cerebral infarcts in patients with autopsy-proven Alzheimer's disease: CERAD, part XVIII. Neurology 51: 159–162. doi: 10.1212/wnl.51.1.159
[8]  Helzner EP, Luchsinger JA, Scarmeas N, Cosentino S, Brickman AM, et al. (2009) Contribution of vascular risk factors to the progression in Alzheimer disease. Archives of neurology 66: 343–348. doi: 10.1001/archneur.66.3.343
[9]  Austin BP, Nair VA, Meier TB, Xu G, Rowley HA, et al. (2011) Effects of Hypoperfusion in Alzheimer's Disease. Journal of Alzheimer's Disease 26: 123–133.
[10]  Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, et al. (2005) Pattern of cerebral hypoperfusion in alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234: 851–859. doi: 10.1148/radiol.2343040197
[11]  Schuff N, Matsumoto S, Kmiecik J, Studholme C, Du A, et al. (2009) Cerebral blood flow in ischemic vascular dementia and Alzheimer's disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimer's and Dementia 5: 454–462. doi: 10.1016/j.jalz.2009.04.1233
[12]  Zaknun JJ, Leblhuber F, Schucktanz H (2008) Value of cerebral blood flow quantification in the diagnosis of dementia. Nuclear medicine communications 29: 260–269. doi: 10.1097/mnm.0b013e3282f38f8f
[13]  Hirao K, Ohnishi T, Hirata Y, Yamashita F, Mori T, et al. (2005) The prediction of rapid conversion to Alzheimer's disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28: 1014–1021. doi: 10.1016/j.neuroimage.2005.06.066
[14]  Kogure D, Matsuda H, Ohnishi T, Asada T, Uno M, et al. (2000) Longitudinal evaluation of early Alzheimer's disease using brain perfusion SPECT. Journal of nuclear medicine 41: 1155–1162.
[15]  Pakrasi S, O'Brien JT (2005) Emission tomography in dementia. Nuclear medicine communications 26: 189–196. doi: 10.1097/00006231-200503000-00003
[16]  Alsop DC, Dai W, Grossman M, Detre JA (2010) Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer's disease. Journal of Alzheimer's Disease 20: 871–880.
[17]  Hiltunen M, Makinen P, Peraniemi S, Sivenius J, van Groen T, et al. (2009) Focal cerebral ischemia in rats alters APP processing and expression of A-beta peptide degrading enzymes in the thalamus. Neurobiology of disease 35: 103–113. doi: 10.1016/j.nbd.2009.04.009
[18]  Shi J, Yang SH, Stubley L, Day AL, Simpkins JW (2000) Hypoperfusion induces overexpression of β-amyloid precursor protein mRNA in a focal ischemic rodent model. Brain research 853: 1–4. doi: 10.1016/s0006-8993(99)02113-7
[19]  Pluta R, Amek MU (2008) Brain ischemia and ischemic blood-brain barrier as etiological factors in sporadic Alzheimer's disease. Neuropsychiatric disease and treatment 4: 855–864. doi: 10.2147/ndt.s3739
[20]  Clifford PM, Zarrabi S, Siu G, Kinsler KJ, Kosciuk MC, et al. (2007) Aβ peptides can enter the brain through a defective blood-brain barrier and bind selectively to neurons. Brain research 1142: 223–236. doi: 10.1016/j.brainres.2007.01.070
[21]  Bell MA, Ball MJ (1981) Morphometric comparison of hippocampal microvasculature in ageing and demented people: diameters and densities. Acta neuropathologica 53: 299–318. doi: 10.1007/bf00690372
[22]  Brown WR, Thore CR (2011) Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathology and applied neurobiology 37: 56–74. doi: 10.1111/j.1365-2990.2010.01139.x
[23]  de la Torre JC (2002) Alzheimer disease as a vascular disorder: nosological evidence. Stroke 33: 1152–1162. doi: 10.1161/01.str.0000014421.15948.67
[24]  Dietrich HH, Xiang C, Han BH, Zipfel GJ, Holtzman DM (2010) Soluble amyloid-β, effect on cerebral arteriolar regulation and vascular cells. Molecular neurodegeneration 5: 15–27. doi: 10.1186/1750-1326-5-15
[25]  Suo Z, Humphrey J, Kundtz A, Sethi F, Placzek A, et al. (1998) Soluble Alzheimers β-amyloid constricts the cerebral vasculature in vivo. Neuroscience letters 257: 77–80. doi: 10.1016/s0304-3940(98)00814-3
[26]  de la Torre JC (2008) Pathophysiology of neuronal energy crisis in Alzheimer's disease. Neurodegenerative diseases 5: 126–132. doi: 10.1159/000113681
[27]  Miles KA (2010) Molecular imaging with dynamic contrast-enhanced computed tomography. Clinical radiology 65: 549–556. doi: 10.1016/j.crad.2010.04.007
[28]  d'Esterre CD, Fainardi E, Aviv RI, Lee TY (2012) Improving Acute Stroke Management with Computed Tomography Perfusion: A Review of Imaging Basics and Applications. Translational Stroke Research 3: 205–220. doi: 10.1007/s12975-012-0178-5
[29]  Whitehead SN, Hachinski VC, Cechetto DF (2005) Interaction Between a Rat Model of Cerebral Ischemia and β-Amyloid Toxicity:Inflammatory Responses. Stroke 36: 107–112. doi: 10.1161/01.str.0000149627.30763.f9
[30]  Whitehead SN, Cheng G, Hachinski VC, Cechetto DF (2007) Progressive increase in infarct size, neuroinflammation, and cognitive deficits in the presence of high levels of amyloid. Stroke 38: 3245–3250. doi: 10.1161/strokeaha.107.492660
[31]  Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY (1999) Dynamic CT measurement of cerebral blood flow: a validation study. AJNR 20: 63–73.
[32]  O'Brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, et al. (2003) Vascular cognitive impairment. The Lancet Neurology 2: 89–98. doi: 10.1016/s1474-4422(03)00305-3
[33]  Villemagne VL, Rowe CC (2011) Amyloid imaging. International Psychogeriatrics 23: S41–S49. doi: 10.1017/s1041610211000895
[34]  Mosconi L, Berti V, Glodzik L, Pupi A, De Santi S, et al. (2010) Pre-clinical detection of Alzheimer's disease using FDG-PET, with or without amyloid imaging. Journal of Alzheimer's Disease 20: 843–854.
[35]  Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, et al. (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease. European journal of nuclear medicine and molecular imaging 36: 811–822. doi: 10.1007/s00259-008-1039-z
[36]  Nordberg A, Rinne JO, Kadir A, L?ngstr?m B (2010) The use of PET in Alzheimer disease. Nature Reviews Neurology 6: 78–87. doi: 10.1038/nrneurol.2009.217
[37]  Jantaratnotai N, Ryu JK, Schwab C, McGeer PL, McLarnon JG (2011) Comparison of Vascular Perturbations in an Aβ-Injected Animal Model and in AD Brain. International Journal of Alzheimer's Disease 2011: 1–8. doi: 10.4061/2011/918280
[38]  Wolk DA, Klunk WE (2009) Update on amyloid imaging: from healthy aging to Alzheimer's disease. Current neurology and neuroscience reports 9: 345–352. doi: 10.1007/s11910-009-0051-4
[39]  Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, et al. (2007) β-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain 130: 2837–2844. doi: 10.1093/brain/awm238
[40]  Riekse RG, Leverenz JB, McCormick W, Bowen JD, Teri L, et al. (2004) Effect of Vascular Lesions on Cognition in Alzheimer's Disease: A Community Based Study. Journal of the American Geriatrics Society 52: 1442–1448. doi: 10.1111/j.1532-5415.2004.52405.x
[41]  Koistinaho M, Kettunen MI, Goldsteins G, Salminen A, Ort M, et al. (2002) Beta-Amyloid precursor protein transgenic mice that harbor diffuse Aβ deposits but do not form plaques show increased ischemic vulnerability: role of inflammation. PNAS 99: 1610–1615. doi: 10.1073/pnas.032670899
[42]  Zhang F, Eckman C, Younkin S, Hsiao KK, Iadecola C (1997) Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein. The Journal of neuroscience 17: 7655–7661.
[43]  Lewis H, Beher D, Cookson N, Oakley A, Piggott M, et al. (2006) Quantification of Alzheimer pathology in ageing and dementia: age-related accumulation of amyloid-beta (42) peptide in vascular dementia. Neuropathology and applied Neurobiology 32: 103–118. doi: 10.1111/j.1365-2990.2006.00696.x
[44]  Alsop DC, Casement M, de Bazelaire C, Fong T, Press DZ (2008) Hippocampal hyperperfusion in Alzheimer's disease. NeuroImage 42: 1267–1274. doi: 10.1016/j.neuroimage.2008.06.006
[45]  Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, et al. (2009) Mild Cognitive Impairment and Alzheimer Disease: Patterns of Altered Cerebral Blood Flow at MR Imaging. Radiology 250: 856–866. doi: 10.1148/radiol.2503080751
[46]  Luckhaus C, Flüβ MO, Wittsack HJ, Grass-Kapanke B, Janner M, et al. (2008) Detection of changed regional cerebral blood flow in mild cognitive impairment and early Alzheimer's dementia by perfusion-weighted magnetic resonance imaging. NeuroImage 40: 495–503. doi: 10.1016/j.neuroimage.2007.11.053
[47]  Paris D, Humphrey J, Quadros A, Patel N, Crescentini R, et al. (2003) Vasoactive effects of Aβ in isolated human cerebrovessels and in a transgenic mouse model of Alzheimer's disease: role of inflammation. Neurol Res 25: 642–651. doi: 10.1179/016164103101201940
[48]  Townsend KP, Obregon D, Quadros A, Patel N, Volmar CH, et al. (2002) Proinflammatory and vasoactive effects of Aβ in the cerebrovasculature. Annals of the New York Academy of Sciences 977: 65–76. doi: 10.1111/j.1749-6632.2002.tb04799.x
[49]  Nariai T, Suzuki R, Hirakawa K, Maehara T, Ishii K, et al. (1995) Vascular reserve in chronic cerebral ischemia measured by the acetazolamide challenge test: comparison with positron emission tomography. AJNR 16: 563–570.
[50]  Bisdas S, Nemitz O, Berding G, Weissenborn K, Ahl B, et al. (2006) Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease. European radiology 16: 2220–2228. doi: 10.1007/s00330-006-0209-2
[51]  Kudo K, Terae S, Katoh C, Oka M, Shiga T, et al. (2003) Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H215O positron emission tomography. AJNR 24: 419–426.
[52]  Wintermark M, Sesay M, Barbier E, Borbély K, Dillon WP, et al. (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36: e83–e99. doi: 10.1161/01.str.0000177884.72657.8b
[53]  O'Connor JPB, Tofts PS, Miles KA, Parkes LM, Thompson G, et al. (2011) Dynamic contrast-enhanced imaging techniques: CT and MRI. Br J Radiol 84: S112–S120. doi: 10.1259/bjr/55166688

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133