全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fructose-Asparagine Is a Primary Nutrient during Growth of Salmonella in the Inflamed Intestine

DOI: doi/10.1371/journal.ppat.1004209

Full-Text   Cite this paper   Add to My Lib

Abstract:

Salmonella enterica serovar Typhimurium (Salmonella) is one of the most significant food-borne pathogens affecting both humans and agriculture. We have determined that Salmonella encodes an uptake and utilization pathway specific for a novel nutrient, fructose-asparagine (F-Asn), which is essential for Salmonella fitness in the inflamed intestine (modeled using germ-free, streptomycin-treated, ex-germ-free with human microbiota, and IL10?/? mice). The locus encoding F-Asn utilization, fra, provides an advantage only if Salmonella can initiate inflammation and use tetrathionate as a terminal electron acceptor for anaerobic respiration (the fra phenotype is lost in Salmonella SPI1? SPI2? or ttrA mutants, respectively). The severe fitness defect of a Salmonella fra mutant suggests that F-Asn is the primary nutrient utilized by Salmonella in the inflamed intestine and that this system provides a valuable target for novel therapies.

References

[1]  Gordon MA (2011) Invasive nontyphoidal Salmonella disease. Current Opinion in Infectious Diseases 24: 484–489 doi:10.1097/QCO.0b013e32834a9980.
[2]  Chen H-M, Wang Y, Su L-H, Chiu C-H (2013) Nontyphoid Salmonella Infection: Microbiology, Clinical Features, and Antimicrobial Therapy. Pediatrics & Neonatology 54: 147–152 doi:10.1016/j.pedneo.2013.01.010.
[3]  Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, et al. (2006) Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440: 303–307 doi:10.1038/nature04616.
[4]  Steeb B, Claudi B, Burton NA, Tienz P, Schmidt A, et al. (2013) Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog 9: e1003301 doi:10.1371/journal.ppat.1003301.
[5]  Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, et al. (2007) Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 5: 2177–2189 doi:10.1371/journal.pbio.0050244.
[6]  Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, et al. (2010) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467: 426–429 doi:10.1038/nature09415.
[7]  Sekirov I, Gill N, Jogova M, Tam N, Robertson M, et al. (2010) Salmonella SPI-1-mediated neutrophil recruitment during enteric colitis is associated with reduction and alteration in intestinal microbiota. Gut Microbes 1: 30–41 doi:10.4161/gmic.1.1.10950.
[8]  Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V, et al. (2011) Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci USA 108: 17480–17485 doi:10.1073/pnas.1107857108.
[9]  Hapfelmeier S, Stecher B, Barthel M, Kremer M, Müller AJ, et al. (2005) The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J Immunol 174: 1675–1685. doi: 10.4049/jimmunol.174.3.1675
[10]  Chaudhuri RR, Peters SE, Pleasance SJ, Northen H, Willers C, et al. (2009) Comprehensive identification of Salmonella enterica serovar Typhimurium genes required for infection of BALB/c mice. PLoS Pathog 5: e1000529 doi:10.1371/journal.ppat.1000529.
[11]  Santiviago CA, Reynolds MM, Porwollik S, Choi SH, Long F, et al. (2009) Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathog 5: e1000477 doi:10.1371/journal.ppat.1000477.
[12]  Lawley TD, Chan K, Thompson LJ, Kim CC, Govoni GR, et al. (2006) Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2: e11. doi: 10.1371/journal.ppat.0020011
[13]  Badarinarayana V, Estep PW3, Shendure J, Edwards J, Tavazoie S, et al. (2001) Selection analyses of insertional mutants using subgenic-resolution arrays. Nat Biotechnol 19: 1060–1065. doi: 10.1038/nbt1101-1060
[14]  Sassetti CM, Boyd DH, Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98: 12712–12717 doi:10.1073/pnas.231275498.
[15]  Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, et al. (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6: 279–289 doi:10.1016/j.chom.2009.08.003.
[16]  Teplitski M, Ahmer BMM, Prüss BM (2005) The control of secondary metabolism, motility, and virulence by the two-component regulatory system BarA/SirA of Salmonella and other γ-proteobacteria. Research Signpost 26.
[17]  Romeo T, Vakulskas CA, Babitzke P (2013) Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 15: 313–324 doi:10.1111/j.1462-2920.2012.02794.x.
[18]  Lapouge K, Schubert M, Allain FH-T, Haas D (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67: 241–253 doi:10.1111/j.1365-2958.2007.06042.x.
[19]  Lawhon SD, Frye JG, Suyemoto M, Porwollik S, McClelland M, et al. (2003) Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol 48: 1633–1645. doi: 10.1046/j.1365-2958.2003.03535.x
[20]  Martínez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, et al. (2011) Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol 80: 1637–1656 doi:10.1111/j.1365-2958.2011.07674.x.
[21]  Barthel M, Hapfelmeier S, Quintanilla-Martinez L, Kremer M, Rohde M, et al. (2003) Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 71: 2839–2858. doi: 10.1128/iai.71.5.2839-2858.2003
[22]  Woo H, Okamoto S, Guiney D, Gunn JS, Fierer J (2008) A model of Salmonella colitis with features of diarrhea in SLC11A1 wild-type mice. PLoS ONE 3: e1603 doi:10.1371/journal.pone.0001603.
[23]  Garner CD, Antonopoulos DA, Wagner B, Duhamel GE, Keresztes I, et al. (2009) Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar Typhimurium murine model of infection. Infect Immun 77: 2691–2702 doi:10.1128/IAI.01570-08.
[24]  Kaiser P, Diard M, Stecher B, Hardt W-D (2012) The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen“s virulence factors, and the host”s mucosal immune response. Immunol Rev 245: 56–83 doi:10.1111/j.1600-065X.2011.01070.x.
[25]  Price-Carter M, Tingey J, Bobik TA, Roth JR (2001) The Alternative Electron Acceptor Tetrathionate Supports B12-Dependent Anaerobic Growth of Salmonella enterica Serovar Typhimurium on Ethanolamine or 1,2-Propanediol. J Bacteriol 183: 2463–2475 doi:10.1128/JB.183.8.2463-2475.2001.
[26]  Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, et al. (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149: 1578–1593 doi:10.1016/j.cell.2012.04.037.
[27]  Wiame E, Van Schaftingen E (2004) Fructoselysine 3-epimerase, an enzyme involved in the metabolism of the unusual Amadori compound psicoselysine in Escherichia coli. Biochem J 378: 1047–1052 doi:10.1042/BJ20031527.
[28]  Wiame E, Delpierre G, Collard F, Van Schaftingen E (2002) Identification of a pathway for the utilization of the Amadori product fructoselysine in Escherichia coli. J Biol Chem 277: 42523–42529 doi:10.1074/jbc.M200863200.
[29]  Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO (2009) A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease. J Proteome Res 8: 754–769 doi:10.1021/pr800858h.
[30]  Tessier FJ (2010) The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol Biol 58: 214–219 doi:10.1016/j.patbio.2009.09.014.
[31]  Hung C-C, Garner CD, Slauch JM, Dwyer ZW, Lawhon SD, et al. (2013) The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD. Mol Microbiol 87: 1045–1060 doi:10.1111/mmi.12149.
[32]  Chavez RG, Alvarez AF, Romeo T, Georgellis D (2010) The physiological stimulus for the BarA sensor kinase. J Bacteriol 192: 2009–2012 doi:10.1128/JB.01685-09.
[33]  Huang Y, Suyemoto M, Garner CD, Cicconi KM, Altier C (2008) Formate acts as a diffusible signal to induce Salmonella invasion. J Bacteriol 190: 4233–4241 doi:10.1128/JB.00205-08.
[34]  Lawhon SD, Maurer R, Suyemoto M, Altier C (2002) Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 46: 1451–1464. doi: 10.1046/j.1365-2958.2002.03268.x
[35]  Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29: 1321–1330. doi: 10.1046/j.1365-2958.1998.01021.x
[36]  Liu MY, Gui G, Wei B, Preston JF, Oakford L, et al. (1997) The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 272: 17502–17510. doi: 10.1074/jbc.272.28.17502
[37]  Teplitski M, Goodier RI, Ahmer BMM (2006) Catabolite repression of the SirA regulatory cascade in Salmonella enterica. Int J Med Microbiol 296: 449–466 doi:10.1016/j.ijmm.2006.06.001.
[38]  Fortune DR, Suyemoto M, Altier C (2006) Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect Immun 74: 331–339 doi:10.1128/IAI.74.1.331-339.2006.
[39]  Martínez LC, Martínez-Flores I, Salgado H, Fernández-Mora M, Medina-Rivera A, et al. (2014) In Silico Identification and Experimental Characterization of Regulatory Elements Controlling the Expression of the Salmonella csrB and csrC Genes. J Bacteriol 196: 325–336 doi:10.1128/JB.00806-13.
[40]  Edwards AN, Patterson-Fortin LM, Vakulskas CA, Mercante JW, Potrykus K, et al. (2011) Circuitry linking the Csr and stringent response global regulatory systems. Mol Microbiol 80: 1561–1580 doi:10.1111/j.1365-2958.2011.07663.x.
[41]  Bustamante VH, Martínez LC, Santana FJ, Knodler LA, Steele-Mortimer O, et al. (2008) HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. Proc Natl Acad Sci USA 105: 14591–14596 doi:10.1073/pnas.0801205105.
[42]  Altier C, Suyemoto M, Ruiz AI, Burnham KD, Maurer R (2000) Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. Mol Microbiol 35: 635–646. doi: 10.1046/j.1365-2958.2000.01734.x
[43]  Johnston C, Pegues DA, Hueck CJ, Lee CA, Miller SI (1996) Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol Microbiol 22: 715–727 doi:10.1046/j.1365-2958.1996.d01-1719.x.
[44]  Ahmer BM, van Reeuwijk J, Watson PR, Wallis TS, Heffron F (1999) Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol 31: 971–982. doi: 10.1046/j.1365-2958.1999.01244.x
[45]  Vivanti V, Finotti E, Friedman M (2006) Level of acrylamide precursors asparagine, fructose, glucose, and sucrose in potatoes sold at retail in Italy and in the United States. Journal of food science 71: C81–C85. doi: 10.1111/j.1365-2621.2006.tb08886.x
[46]  Stadler RH, Robert F, Riediker S, Varga N, Davidek T, et al. (2004) In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. J Agric Food Chem 52: 5550–5558 doi:10.1021/jf0495486.
[47]  Surdyk N, Rosén J, Andersson R, Aman P (2004) Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. J Agric Food Chem 52: 2047–2051 doi:10.1021/jf034999w.
[48]  Yaylayan VA, Wnorowski A, Perez Locas C (2003) Why Asparagine Needs Carbohydrates To Generate Acrylamide. J Agric Food Chem 51: 1753–1757 doi:10.1021/jf0261506.
[49]  Mottram DS, Wedzicha BL, Dodson AT (2002) Food chemistry: Acrylamide is formed in the Maillard reaction. Nature 419: 448–449 doi:10.1038/419448a.
[50]  Tareke E, Rydberg P, Karlsson P, Eriksson S, T?rnqvist M (2002) Analysis of Acrylamide, a Carcinogen Formed in Heated Foodstuffs. J Agric Food Chem 50: 4998–5006 doi:10.1021/jf020302f.
[51]  Tareke E, Rydberg P, Karlsson P, Eriksson S, T?rnqvist M (2000) Acrylamide: A Cooking Carcinogen? Chem Res Toxicol 13: 517–522 doi:10.1021/tx9901938.
[52]  Elmore JS, Mottram DS (2002) Compilation of free amino acid data for various food raw materials, showing the relative contributions of asparagine, glutamine, aspartic acid and glutamic acid to the free amino acid composition. JIFSAN Acrylamide in Food Workshop, Chicago.
[53]  Anet EFLJ, Reynolds TM (1957) Chemistry of non-enzymic browning. II. Reactions between Amino Acids, Organic Acids, and sugars in freeze-dried Apricots and Peaches. Aust J Chem 10: 182–191 doi:10.1071/CH9570182.
[54]  Eichner K, Reutter M, Wittmann R (1994) Detection of Amadori compounds in heated foods. Thermally Generated Flavors (ACS Symposium Series 543). Parliament TH, Morello MJ, McGorrin RJ, editors, Washington D.C.: American Chemical Society, Chapter 5.
[55]  Mossine VV, Mawhinney TP (2010) 1-Amino-1-deoxy-D-fructose (“fructosamine”) and its derivatives. Adv Carbohydr Chem Biochem 64: 291–402 doi:10.1016/S0065-2318(10)64006-1.
[56]  Mottram DS (2007) The Maillard Reaction: Source of Flavour in Thermally Processed Foods. Flavours and Fragrances. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 269–283. doi:10.1007/978-3-540-49339-6_12.
[57]  Anet EFLJ (1957) Chemistry of non-enzymic browning. II. Some Crystalline Amino Acid-Deoxy-sugars. Aust J Chem 10: 193–197 doi:10.1071/CH9570193.
[58]  Bodiga VL, Eda SR, Bodiga S (2013) Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev 19: 49–63 doi:10.1007/s10741-013-9374-y.
[59]  Kato S, Itoh K, Ochiai M, Iwai A, Park Y, et al. (2008) Increased pentosidine, an advanced glycation end-product, in urine and tissue reflects disease activity in inflammatory bowel diseases. Journal of Gastroenterology and Hepatology 23: S140–S145 doi:10.1111/j.1440-1746.2008.05552.x.
[60]  Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46: 223–234 doi:10.1146/annurev.med.46.1.223.
[61]  Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, et al. (2013) Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502: 96–99 doi:10.1038/nature12503.
[62]  Troxell B, Fink RC, Porwollik S, McClelland M, Hassan HM (2011) The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: identification of new Fur targets. BMC Microbiol 11: 236 doi:10.1186/1471-2180-11-236.
[63]  Nuccio SP, B?umler AJ (2014) Comparative Analysis of Salmonella Genomes Identifies a Metabolic Network for Escalating Growth in the Inflamed Gut. MBio 5: e00929–14–e00929–14 doi:10.1128/mBio.00929-14.
[64]  Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory. 1 p.
[65]  Canals R, Xia X-Q, Fronick C, Clifton SW, Ahmer BM, et al. (2012) High-throughput comparison of gene fitness among related bacteria. BMC Genomics 13: 212 doi:10.1186/1471-2164-13-212.
[66]  Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645 doi:10.1073/pnas.120163297.
[67]  Arpaia N, Godec J, Lau L, Sivick KE, McLaughlin LM, et al. (2011) TLR signaling is required for Salmonella typhimurium virulence. Cell 144: 675–688 doi:10.1016/j.cell.2011.01.031.
[68]  Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI (2000) Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect Immun 68: 6139–6146. doi: 10.1128/iai.68.11.6139-6146.2000
[69]  Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31: 265–273. doi: 10.1016/s1046-2023(03)00155-5
[70]  Smyth GK, Yang YH, Speed T (2003) Statistical issues in cDNA microarray data analysis. Methods Mol Biol 224: 111–136 doi:10.1385/1-59259-364-X:111.
[71]  Hodge JE, Fisher BE (1963) Amadori rearrangement products. Methods in Carbohydrate Chemistry 2: 99–107.
[72]  Wang J, Lu Y-M, Liu B-Z, He H-Y (2008) Electrospray positive ionization tandem mass spectrometry of Amadori compounds. J Mass Spectrom 43: 262–264 doi:10.1002/jms.1290.
[73]  Miura Y, Tahara S, Mizutani J (1973) Isolation and identification of 1-deoxy-1-(L-asparagino)-D-fructose formed in the autoclaved reaction medium. Agric Biol Chem 37: 2669–2670. doi: 10.1271/bbb1961.37.2669
[74]  Keil P, Mortensen HB, Christophersen C (1985) Fructosylvaline. A simple model of the N-terminal residue of human haemoglobin A1c. Acta Chem Scand, B, Org Chem Biochem 39: 191–193. doi: 10.3891/acta.chem.scand.39b-0191
[75]  Krause R, Knoll K, Henle T (2003) Studies on the formation of furosine and pyridosine during acid hydrolysis of different Amadori products of lysine. Eur Food Res Technol 216: 277–283 doi:10.1007/s00217-002-0649-0.
[76]  Srinivas SM, Harohally NV (2012) Improved synthesis of lysine- and arginine-derived Amadori and Heyns products and in vitro measurement of their angiotensin I-converting enzyme inhibitory activity. J Agric Food Chem 60: 1522–1527 doi:10.1021/jf204185y.
[77]  Weitzel G, Geyer H-U, Fretzdorff A-M (1957) Darstellung und Stabilit?t der Salze von Aminos?ure-N-Glykosiden. Chem Ber 90: 1153–1161 doi:10.1002/cber.19570900641.
[78]  Mossine VV, Glinsky GV, Feather MS (1994) The preparation and characterization of some Amadori compounds (1-amino-1-deoxy-D-fructose derivatives) derived from a series of aliphatic omega-amino acids. Carbohydr Res 262: 257–270. doi: 10.1016/0008-6215(94)84183-7
[79]  Brown RN, Sanford JA, Park JH, Deatherage BL, Champion BL, et al. (2012) A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions. Int J Proteomics 2012: 123076 doi:10.1155/2012/123076.
[80]  Stojiljkovic I, B?umler AJ, Heffron F (1995) Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 177: 1357–1366.
[81]  Teplitski M, Al-Agely A, Ahmer BMM (2006) Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiology (Reading, Engl) 152: 3411–3424 doi:10.1099/mic.0.29118-0.
[82]  Wang RF, Kushner SR (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100: 195–199. doi: 10.1016/0378-1119(91)90366-j

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133