In order to investigate the effects of temperature on the abundances and community compositions of ammonia-oxidizing archaea (AOA) and bacteria (AOB), lake microcosms were constructed and incubated at 15°C, 25°C and 35°C for 40 days, respectively. Temperature exhibited different effects on the abundance and diversity of archaeal and bacterial amoA gene. The elevated temperature increased the abundance of archaeal amoA gene, whereas the abundance of bacterial amoA gene decreased. The highest diversity of bacterial amoA gene was found in the 25°C treatment sample. However, the 25°C treatment sample maintained the lowest diversity of archaeal amoA gene. Most of the archaeal amoA sequences obtained in this study affiliated with the Nitrosopumilus cluster. Two sequences obtained from the 15°C treatment samples were affiliated with the Nitrosotalea cluster. N. oligotropha lineage was the most dominant bacterial amoA gene group. Several sequences affiliated to Nitrosospira and undefined N. europaea/NC. mobilis like lineage were found in the pre-incubation and 25°C treatment groups.
References
[1]
Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451: 293–296. doi: 10.1038/nature06592
[2]
Chen GY, Qiu SL, Zhou YY (2009) Diversity and abundance of ammonia-oxidizing bacteria in eutrophic and oligotrophic basins of a shallow Chinese lake (Lake Donghu). Res Microbiol 160: 173–178. doi: 10.1016/j.resmic.2009.01.003
[3]
Zeng J, Zhao DY, Huang R, Wu QL (2012) Abundance and community composition of ammonia-oxidizing archaea and bacteria in two different zones of Lake Taihu. Can J Microbiol 58: 1018–1026. doi: 10.1139/w2012-078
[4]
Hou J, Song CL, Cao XY, Zhou YY (2013) Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu). Water Res 47: 2285–2296. doi: 10.1016/j.watres.2013.01.042
[5]
Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55: 485–529. doi: 10.1146/annurev.micro.55.1.485
[6]
Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74. doi: 10.1126/science.1093857
[7]
Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, et al. (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7: 1985–1995. doi: 10.1111/j.1462-2920.2005.00906.x
[8]
Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, et al. (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18: 331–340. doi: 10.1016/j.tim.2010.06.003
[9]
Stark JM (1996) Modeling the temperature response of nitrification. Biogeochemistry 35: 433–445. doi: 10.1007/bf02183035
[10]
Thamdrup B, Fleischer S (1998) Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments. Aquat Microb Ecol 15: 191–199. doi: 10.3354/ame015191
[11]
Koops HP, Purkhold U, Pommerening-R?ser A, Timmermann G, Wagner M (2006) The lithoautotrophic ammonia-oxidizing bacteria, p. 778–811. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, and Stackebrandt E (ed.), The prokaryotes, 3rd ed., vol. 5. Springer, New York, NY.
[12]
Fierer N, Carney KM, Horner-Devine MC, Megonigal JP (2009) The biogeography of ammonia-oxidizing bacterial communities in soil. Microbial Ecol 58: 435–445. doi: 10.1007/s00248-009-9517-9
[13]
Horz HP, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA 101: 15136–15141. doi: 10.1073/pnas.0406616101
[14]
Tourna M, Stieglmeier M, Spang A, K?nneke M, Schintlmeister A, et al. (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 108: 8420–8425. doi: 10.1073/pnas.1013488108
[15]
de la Torre JR, Walker CB, Ingalls AE, K?nneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10: 810–818. doi: 10.1111/j.1462-2920.2007.01506.x
[16]
Urakawa H, Tajima Y, Numata Y, Tsuneda S (2008) Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems. Appl Environ Microbiol 74: 894–900. doi: 10.1128/aem.01529-07
[17]
Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10: 1357–1364. doi: 10.1111/j.1462-2920.2007.01563.x
[18]
Leininger S, Urich T, Schloter M, Schwark L, Qi J, et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806–809. doi: 10.1038/nature04983
[19]
Beman JM, Francis CA (2006) Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl Environ Microb 72: 7767–7777. doi: 10.1128/aem.00946-06
[20]
He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, et al. (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9: 2364–2374. doi: 10.1111/j.1462-2920.2007.01358.x
[21]
Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microb 11: 1658–1671. doi: 10.1111/j.1462-2920.2009.01891.x
[22]
Zeng J, Yang L, Li J, Liang Y, Xiao L, et al. (2009) Vertical distribution of bacterial community structure in the sediments of two eutrophic lakes revealed by denaturing gradient gel electrophoresis (DGGE) and multivariate analysis techniques. World J Microb Biot 25: 225–233. doi: 10.1007/s11274-008-9883-3
[23]
Jin XC, Tu QY (1990) Survey specification for lake eutrophication. Environmental Science Press Beijing China pp: 208–230.
[24]
Wu Y, Xiang Y, Wang J, Zhong J, He J, et al. (2010) Heterogeneity of archaeal and bacterial ammonia-oxidizing communities in Lake Taihu, China. Environ Microbiol Rep 2: 569–576. doi: 10.1111/j.1758-2229.2010.00146.x
[25]
Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 14683–14688. doi: 10.1073/pnas.0506625102
[26]
Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microb 63: 4704–4712.
[27]
Altschul S, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25: 3389–3402. doi: 10.1093/nar/25.17.3389
[28]
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882. doi: 10.1093/nar/25.24.4876
[29]
Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microb 71: 1501–1506. doi: 10.1128/aem.71.3.1501-1506.2005
[30]
Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599. doi: 10.1093/molbev/msm092
[31]
Pester M, Rattei T, Flechl S, Gr?ngr?ft A, Richter A, et al. (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14: 525–539. doi: 10.1111/j.1462-2920.2011.02666.x
[32]
Cao HL, Hong YG, Li M, Gu JD (2011) Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea. Anton Leeuw 100: 545–556. doi: 10.1007/s10482-011-9610-1
[33]
Wu Y, Ke X, Hernández M, Wang B, Dumont MG, et al. (2013) Autotrophic growth of bacterial and archaeal ammonia oxidizers in freshwater sediment microcosms incubated at different temperatures. Appl Environ Microb 79: 3076–3084. doi: 10.1128/aem.00061-13
[34]
Zhao WD, Song ZQ, Jiang HC, Li WJ, Mou XZ, et al. (2011) Ammonia-oxidizing archaea in Kamchatka hot springs. Geomicrobiology J 28: 149–159. doi: 10.1080/01490451003753076
[35]
Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 108: 15892–15897. doi: 10.1073/pnas.1107196108
[36]
Hatzenpichler R, Lebecleva EV, Spieck E, Stoecker K, Richter A, et al. (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 105: 2134–2139. doi: 10.1073/pnas.0708857105
[37]
Reigstad LJ, Richter A, Daims H, Urich T, Schwark L, et al. (2008) Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol Ecol 64: 167–174. doi: 10.1111/j.1574-6941.2008.00466.x
[38]
Hatzenpichler R (2012) Diversity, physiology and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 78: 7501–7510. doi: 10.1128/aem.01960-12
[39]
Racz LA, Datta T, Goel R (2010) Effect of organic carbon on ammonia oxidizing bacteria in a mixed culture. Bioresource Technol 101: 6454–6460. doi: 10.1016/j.biortech.2010.03.058
[40]
Park HD, Noguera DR (2004) Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res 38: 3275–3286. doi: 10.1016/j.watres.2004.04.047
[41]
Starry OS, Valett HM, Schreiber ME (2005) Nitrification rates in a headwater stream: influences of seasonal variation in C and N supply. J N Am Benthol Soc 24: 753–761. doi: 10.1899/05-015.1
[42]
J?ntti H, Stange F, Lesskinen E, Hietanen S (2011) Seasonal variation in nitrification and nitrate-reduction pathways in coastal sediments in the Gulf of Finland, Baltic Sea. Aquat Microb Ecol 63: 171–181. doi: 10.3354/ame01492
[43]
Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70: 99–108. doi: 10.1111/j.1574-6941.2009.00725.x
[44]
Seitzinger SP (1990) Denitrification in aquatic sediments. Plenum Press, New York.
[45]
Avrahami S, Liesack W, Conrad R (2003) Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ Microbiol 5: 691–705. doi: 10.1046/j.1462-2920.2003.00457.x
[46]
de Bie MJM, Speksnijder AGCL, Kowalchuk GA, Schuurman T, Zwart G, et al. (2001) Shifts in the dominant populations of ammonia-oxidizing beta-subclass Proteobacteria along the eutrophic Schelde estuary. Aquat Microb Ecol 23: 225–236. doi: 10.3354/ame023225
[47]
Dang H, Li J, Chen R, Wang L, Guo L, Zhang Z, et al. (2010) Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl Environ Microb 76: 4691–4702. doi: 10.1128/aem.02563-09