全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2014 

Incorporating β-Cyclodextrin with ZnO Nanorods: A Potentiometric Strategy for Selectivity and Detection of Dopamine

DOI: 10.3390/s140101654

Keywords: ZnO nanorods, dopamine, potentiometric response, selectivity, stability, repeatability

Full-Text   Cite this paper   Add to My Lib

Abstract:

We describe a chemical sensor based on a simple synthesis of zinc oxide nanorods (ZNRs) for the detection of dopamine molecules by a potentiometric approach. The polar nature of dopamine leads to a change of surface charges on the ZNR surface via metal ligand bond formation which results in a measurable electrical signal. ZNRs were grown on a gold-coated glass substrate by a low temperature aqueous chemical growth (ACG) method. Polymeric membranes incorporating β-cyclodextrin (β-CD) and potassium tetrakis (4-chlorophenyl) borate was immobilized on the ZNR surface. The fabricated electrodes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The grown ZNRs were well aligned and exhibited good crystal quality. The present sensor system displays a stable potential response for the detection of dopamine in 10 ?2 mol·L ?1 acetic acid/sodium acetate buffer solution at pH 5.45 within a wide concentration range of 1 × 10 ?6 M –1 × 10 ?1 M, with sensitivity of 49 mV/decade. The electrode shows a good response time (less than 10 s) and excellent repeatability. This finding can contribute to routine analysis in laboratories studying the neuropharmacology of catecholamines. Moreover, the metal-ligand bonds can be further exploited to detect DA receptors, and for bio-imaging applications.

References

[1]  Adams, R.N. Probing brain chemistry with electroanalytical techniques. Anal. Chem. 1976, 48, 1126A–1138A.
[2]  Jackowska, K.; Krysinski, P. New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 2013, 405, 3753–3771.
[3]  Bakker, E. Electrochemical sensors. Anal. Chem. 2004, 76, 3285–3298.
[4]  Bakker, E.; Qin, Y. Electrochemical sensors. Anal. Chem. 2006, 78, 3965.
[5]  Cammann, K. Bio-Senesors based on ion-selective electrodes. Anal. Chem. 1977, 287, 1–9.
[6]  Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.
[7]  Mirkin, M.V.; Shao, Y. Nanometer-sized electrochemical sensors. Anal. Chem. 1997, 69, 1627–1634.
[8]  Perry, M.; Li, Q.; Kennedy, R.T. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal. Chim. Acta 2009, 653, 1–22.
[9]  Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric ion sensors. Chem. Rev. 2008, 108, 329–351.
[10]  Carlsson, A. The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev. 1959, 11, 490–493.
[11]  Girault, J.; Greengard, P. The neurobiology of dopamine signaling. Arch. Neurol. 2004, 61, 641–644.
[12]  Hornykiewicz, O. Dopamine (3-hydroxytyramine) and brain function. Pharmacol. Rev. 1966, 18, 925–964.
[13]  Schultz, W. Behavioral dopamine signals. Trends Neurosci. 2007, 30, 203–210.
[14]  Hnasko, N.; Ben-Jonathan, R. Dopamine as a prolactin (PRL) Inhibitor. Endocr. Rev. 2001, 22, 724–763.
[15]  Wightman, R.M.; May, L.J.; Michael, A.C. Detection of dopamine dynamics in the brain. Anal. Chem. 1988, 60, 769A–779A.
[16]  Mahanthesha, K.R.; Kumara Swamy, B.E.; Chandra, U.; Sharath Shankar, S.; Pai, K.V. Electrocatalytic oxidation of dopamine at murexide and TX-100 modified carbon paste electrode A cyclic voltammetric study. J. Mol. Liq. 2012.
[17]  Sotonyi, P.; Merkely, B.; Hubay, M.; Jaray, J.; Zima, E.; Soos, P.; Kovacs, A.; Szentmariay, I. Comparative study on cardiotoxic effect of tinuvin 770: A Light stabilizer of medical plastics in rat model. Toxicol. Sci. 2004, 77, 368–374.
[18]  Zheng, J.; Zhou, X. Sodium dodecyl sulfate-modified carbon paste electrodes for selective determination of dopamine in the presence of ascorbic acid. Bioelectrochemsitry 2007, 70, 408–415.
[19]  Vishwanath1, C.C.; Swamy1, B.E.K.; Sathisha, T.V.; Madhu, G.M. Electrochemical studies of dopamine at lithium zirconate/SDS modified carbon paste electrode: A cyclicvoltammetric study. Anal. Bioanal. Electrochem. 2013, 5, 341–351.
[20]  Trouillon, R.; Passarelli, M.K.; Wang, J.; Kurczy, M.E.; Ewing, A.G. Chemical analysis of single cells. Anal. Chem. 2013, 85, 522–542.
[21]  Lima, J.L.F.C.; Montenegro, M.C.B.S.M. Dopamine ion-selective electrode for potentiometry in pharmaceutical preparations. Mikrochim. Acta 1999, 131, 187–190.
[22]  Othman, A.M.; Rizka, N.M.; El-shahawi, M.S. Potetiometric determination of dopamine in pharmaceutical preparation by crown ether-PVC membrane senesors. Anal. Sci. 2004, 20, 651–655.
[23]  Kholoshenko, N.M.; Ryasenskii, S.S.; Gorelov, I.P. All-solid-state ion-selective electrodes with ion-to-electron transducers for dopamine determination. Pharm. Chem. J. 2006, 40, 334–336.
[24]  Saijo, R.; Tsunekawa, S.; Murakami, H.; Shirai, N.; Ikeda, S.; Odashima, K. Dopamine-selective potentiometric responses by new ditopic sensory elements based on a hexahomotrioxacalix[3]arene. Bioorg. Med. Chem. Lett. 2007, 17, 767–771.
[25]  Evtugyn, G.; Shamagsumova, R.; Younusova, L.; Sitdikov, R.R.; Stoikov, I.I.; Antipin, I.S.; Budnikov, H.C. Solid-contact potentiometric sensor based on polyaniline-silver composite for the detection of dopamine. Chem. Sens. 2014, 4, 4.
[26]  Schmidt-Mende, L.; MacManus-Driscoll, J.L. ZnO—Nanostructures, defects, and devices. Mater. Today 2007, 10, 40–48.
[27]  Redmond, G.; O'Keeffe, A.; Burgess, C.; MacHale, C.; Fitzmaurice, D. Spectroscopic determination of the flatband potential of transparent nanocrystalline ZnO films. J. Phys. Chem. 1993, 97, 11081–11086.
[28]  Ghindilis, A.L.; Atanasov, P.; Wilkins, E. Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications. Electroanalysis 1997, 9, 661–674.
[29]  Gorton, L.; Lindgren, A.; Larsson, T.; Munteanu, F.D.; Ruzgas, T.; Gazaryan, I. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal. Chim. Acta 1999, 400, 91–108.
[30]  Topoglidis, E.; Cass, A.E.G.; O'Regan, B.; Durrant, J.R. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J. Electroanal. Chem. 2001, 517, 20–27.
[31]  Jia, J.; Wang, B.; Wu, A.; Cheng, G.; Li, Z.; Dong, S. A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal. Chem. 2002, 74, 2217–2223.
[32]  Huang, X.; Choi, Y. Chemical sensors based on nanostructured materials. Sens. Actuators B: Chem. 2007.
[33]  Asif, M. Zinc Oxide Nanostructure Based Electrochemical Biosensors and Drug Delivery to Intracellular Environments. Ph.D. Thesis, Link?ping University, Link?ping, Sweden, 2011.
[34]  Miller, B.G.; Traut, T.W.; Wolfenden, R. A role for zinc in OMP decarboxylase, an unusually proficient enzyme. J. Am. Chem. Soc. 1998, 120, 2666–2667.
[35]  Zhang, F.; Wang, X.; Ai, S.; Suna, Z.; Wan, Q.; Zhub, Z.; Xian, Y.; Jin, L.; Yamamoto, K. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 2004, 519, 155–160.
[36]  Fooladsaz, K.; Negahdary, M.; Rahimi, G.; Habibi-Tamijani, A.; Parsania, S.; Akbari-dastjerdi, H.; Sayad, A.; Jamaleddini, A.; Salahi, F.; Asadi, A. Dopamine determination with a biosensor based on catalase and modified carbon paste electrode with zinc oxide nanoparticles. Int. J. Electrochem. Sci. 2012, 7, 9892–9908.
[37]  Wang, Z.L.; Kong, X.Y.; Ding, Y.; Gao, P.; Hughes, W.L.; Yang, R.; Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 2004, 14, 943–956.
[38]  Li, Q.H.; Gao, T.; Wang, Y.G.; Wang, T.H. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl. Phys. Lett. 2005, 86, 123117.
[39]  Kang, B.S.; Ren, F.; Heo, Y.W.; Tien, L.C.; Norton, D.P.; Pearton, S.J. pH measurements with single ZnO nanorods integrated with a microchannel. Appl. Phys. Lett. 2005, 86, 112105.
[40]  Li, C.C.; Du, Z.F.; Li, L.M.; Yu, H.C.; Wan, Q.; Wang, T.H. Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature. Appl. Phys. Lett. 2007, 91, doi:10.1063/1.2752541.
[41]  Liao, L.; Lu, H.B.; Li, J.C.; He, H.; Wang, D.F.; Fu, D.J.; Liu, C.; Zhang, W.F. Size dependence of gas sensitivity of ZnO nanorods. J. Phys. Chem. C 2007, 111, 1900–1903.
[42]  Park, J.Y.; Song, D.E.; Kim, S.S. An approach to fabricating chemical sensors based on ZnO nanorod arrays. Nanotechnology 2008, 19, 105503.
[43]  Womelsdorf, H.; Hoheisel, W.; Passing, G. Nanopartikulaeres, redispergierbares Faellungszinkoxid. Phys. Chem. Interf. Nanomater. 2004, doi:10.1117/12.559645.
[44]  Vayssieres, L.; Keis, K.; Lindquist, S.; Hagfeldt, A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 2001, 105, 3350–3352.
[45]  De la Garza, L.; Saponjic, Z.V.; Dimitrijevic, N.M.; Thurnauer, M.C.; Rajh, T. Surface states of titanium dioxide nanoparticles modified with enediol ligands. J. Phys. Chem. B 2006, 110, 680–686.
[46]  Rajh, T.; Chen, L.X.; Lukas, K.; Liu, T.; Thurnauer, M.C.; Tiede, D.M. Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B 2002, 106, 10543–10552.
[47]  Huang, W.; Jiang, P.; Wei, C.; Zhuang, D.; Shi, J. Low-temperature one-step synthesis of covalently chelated ZnO/dopamine hybrid nanoparticles and their optical properties. J. Mater. Res. 2008, 23, 1946–1952.
[48]  Durst, R.A.; B?umner, A.J.; Murray, R.W.; Buck, R.P.; Andrieux, C.P. Chemically modified electrodes: Recommended terminology and definitions. Pure Appl. Chem. 1997, 69, 1317–1323.
[49]  Linder, R.P.; Buck, E. Recommendations for nomenclature of Ion-selective electrodes. Pure Appl. Chem. 1994, 66, 2527–2536.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133