Two new coumarin-based “turn-off” fluorescent probes, ( E)-3-((3,4-dihydroxybenzylidene)amino)-7-hydroxy-2 H-chromen-2-one ( BS1) and ( E)-3-((2,4-dihydroxybenzylidene)amino)-7-hydroxy-2 H-chromen-2-one ( BS2), were synthesized and their detection of copper(II) and iron(III) ions was studied. Results show that both compounds are highly selective for Cu 2+ and Fe 3+ ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin ( 3) and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II) or iron(III) ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10 ?5 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu 2+ and Fe 3+ ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes.
References
[1]
Lakowicz, J.R. Topics in Fluorescence Spectroscopy: Probe Design and Chemical Sensing; Plenum Press: New York, NY, USA, 1994; Volume 4, pp. 21–68.
[2]
De Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97, 1515–1566.
[3]
Demchenko, A.P. Introduction to Fluorescence Sensing, 1st ed. ed.; Springer: Heidelberg, Germany, 2008; pp. 1–6.
[4]
Chen, X.; Sun, M.; Ma, H.M. Progress in spectroscopic probes with cleavable active bonds. Curr. Org. Chem. 2006, 10, 477–489.
[5]
Li, X.; Gao, X.; Shi, W.; Ma, H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev. 2013, doi:10.1021/cr300508p.
[6]
Linder, M.C. Biochemistry of Copper; Plenum Press: New York, NY, USA, 1991; pp. 73–134.
[7]
Ponka, P. Cellular iron metabolism. Kidney Int. 1999, 55, S2–S11.
[8]
Wood, R.J.; Ronnenberg, A.G. Iron. In Modern Nutrition in Health and Disease, 10th ed.; Shils, M.E., Shike, M., Ross, A.C., Caballero, B., Cousins, R.J., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 248–270.
[9]
Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F. Inorganic Chemistry, 4th ed. ed.; Prentice Hall: Oxford, UK, 2006; p. p. 712.
[10]
Guo, Z.Q.; Zhu, W.H.; Tian, H. Hydrophilic copolymer bearing dicyanomethylene-4H-pyran moiety as fluorescent film sensor for Cu2+ and pyrophosphate anion. Macromolecules 2010, 43, 739–744.
[11]
Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev. 2008, 108, 1517–1549.
[12]
Luo, W.; Ma, Y.M.; Quinn, P.J.; Hider, R.C.; Liu, Z.D. Design, synthesis and properties of novel iron(III)-specific fluorescent probes. J. Pharm. Pharmacol. 2004, 56, 529–536.
[13]
Yao, J.; Dou, W.; Qin, W.; Liu, W. A new coumarin-based chemosensor for Fe3+ in water. Inorg. Chem. Comm. 2009, 12, 116–118.
[14]
Chen, X.; Pradhan, T.; Wang, F.; Kim, J.S.; Yoon, J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev. 2012, 112, 1910–1956.
[15]
Zhao, Y.; Zhang, X.-B.; Han, Z.-X.; Qiao, L.; Li, C.-Y.; Jian, L.-X.; Shen, G.-L.; Yu, R.-Q. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal. Chem. 2009, 81, 7022–7030.
[16]
Zhao, C.; Feng, P.; Cao, J.; Wang, X.; Yang, Y.; Zhang, Y.; Zhang, J.; Zhang, Y. Borondipyrromethene-derived Cu2+ sensing chemodosimeter for fast and selective detection. Org. Biomol. Chem. 2012, 10, 3104–3109.
[17]
Li, N.; Xiang, Y.; Tong, A.J. Highly sensitive and selective “turn-on” fluorescent chemodosimeter for Cu2+ in water via Cu2+-promoted hydrolysis of lactone moiety in coumarin. Chem. Commun. 2010, 46, 3363–3365.
[18]
Kim, M.H.; Jang, H.H.; Yi, S.J.; Chang, S.K.; Han, M.S. Coumarin-derivative-based off–on catalytic chemodosimeter for Cu2+ ions. Chem. Commun. 2009, 45, 4838–4840.
[19]
Lee, M.H.; Giap, T.V.; Kim, S.H.; Lee, Y.H.; Kang, C.; Kim, J.S. A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base. Chem. Commun. 2010, 46, 1407–1409.
[20]
Lim, N.C.; Pavlova, S.V.; Bruckner, C. Squaramide hydroxamate-based chemidosimeter responding to iron(iii) with a fluorescence intensity increase. Inorg. Chem. 2009, 48, 1173–1182.
[21]
Benesi, H.A.; Hildebrand, J.H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 1949, 71, 2703–2707.
[22]
García-Beltrán, O.; Mena, N.; Ya?ez, O.; Caballero, J.; Vargas, V.; Nu?ez, M.T.; Cassels, B.K. Design, synthesis and cellular dynamics studies in membranes of a new coumarin-based “turn-off” fluorescent probe selective for Fe2+. Eur. J. Med. Chem. 2013, 67, 60–63.
[23]
Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228.
[24]
Hohenstein, E.G.; Chill, S.T.; Sherrill, C.D. Assessment of the performance of the M05–2X and M06–2X exchange-correlation functionals for noncovalent interactions in biomolecules. J. Chem. Theory Comput. 2008, 4, 1996–2000.
[25]
Mena, N.; Bulteau, A.L.; Salazar, J.; Hirsch, E.C.; Nú?ez, M.T. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity. Biochem. Biophys. Res. Commun. 2011, 409, 241246.
[26]
García-Beltrán, O.; Mena, N.; Friedrich, L.C.; Netto-Ferreira, J.C.; Vargas, V.; Quina, F.H.; Nú?ez, M.T.; Cassels, B.K. Design and synthesis of a new coumarin-based “turn-on” fluorescent probe selective for Cu2+. Tetrahedron Lett. 2012, 53, 5280–5283.
[27]
Li, H.-Y.; Gao, S.; Xi, Z. A colorimetric and “turn-on” fluorescent chemosensor for Zn(II) based on coumarin Schiff-base derivative. Inorg. Chem. Commun. 2009, 12, 300–303.
[28]
Jung, H.S.; Kwon, P.S.; Lee, J.W.; Kim, J.I.; Hong, C.S.; Kim, J.W.; Yan, S.; Lee, J.Y.; Lee, J.H.; Joo, T.; et al. Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J. Am. Chem. Soc. 2009, 131, 2008–2012.
Chen, Z.; Wang, L.; Zou, G.; Tang, J.; Cai, X.; Teng, M.; Chen, L. Highly selective fluorescence turn-on chemosensor based on naphthalimide derivatives for detection of copper(II) ions. Spectrochim Acta A Mol. Biomol. Spectrosc. 2013, 105, 57–61.
[31]
Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926.
[32]
Larson, J.W.; McMahon, T.B. Gas-phase bihalide and pseudobihalide ions. An ion cyclotron resonance determination of hydrogen bond energies in XHY- species (X, Y = F, Cl, Br, CN). Inorg. Chem. 1984, 23, 2029–2033.
[33]
Emsley, J. Very strong hydrogen bonding. Chem. Soc. Rev. 1980, 9, 91–124.
[34]
Horobin, R.W.; Rashid-Doubell, F.; Pediani, J.D.; Milligan, G. Predicting small molecule fluorescent probe localization in living cells using QSAR modeling. 1. Overview and models for probes of structure, properties and function in single cells. Biotech. Histochem. 2013, 88, 440–460.
[35]
Anderegg, G. Critical survey of stability constants of NTA complexes. Pure Appl. Chem. 1982, 54, 2693–2758.