A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h ?1 with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 μM for methanol and 0.2 μM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement.
References
[1]
Aspartame. Available online: http://www.efsa.europa.eu/en/topics/topic/aspartame.htm?wtrl=01 (accessed on 23 August 2013).
[2]
Magnuson, B.A.; Burdock, G.A.; Doull, J.; Kroes, R.M. Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Crit. Rev. Toxicol. 2007, 37, 629–726.
[3]
Mattes, R.D.; Popkin, B.M. Nonnutritive sweetener consumption in humans: Effects on appetite and food intake and their putative mechanisms. Am. J. Clin. Nutr. 2009, 89, 11–14.
[4]
Tandel, K.R. Sugar substitutes: Health controversary over perceived benefits. J. Pharmacol. Pharmacother. 2011, 2, 236–243.
[5]
Chen, Q.C.; Wang, J. Simultaneous determination of artificial sweeteners, preservatives, caffeine, theobromine and theophylline in food and pharmaceutical preparations by ion chromatography. J. Chromatogr. A 2001, 937, 57–64.
[6]
Zhu, Y.; Guo, Y.Y.; Ye, M.L.; James, F.S. Separation and simultaneous determination of four artificial sweeteners in food and beverages by ion chromatography. J. Chromatogr. A 2005, 1085, 143–146.
[7]
Zygler, A.; Wasik, A.; Kot-Wasik, A.; Namiesnik, J. Determination of nine high-intensity sweeteners in various foods by high-performance liquid chromatography with mass spectrometric detection. Anal. Bioanal. Chem. 2011, 400, 2159–2172.
[8]
Carloni, J.; Santini, A.O.; Nasser, A.L.M.; Pezza, H.R.; de Oliveira, J.E.; Melios, C.B.; Pezza, L. Potentiometric determination of saccharin in commercial artificial sweeteners using a silver electrode. Food. Chem. 2003, 83, 297–301.
[9]
Pierini, G.D.; Llamas, N.E.; Fragoso, W.D.; Lemos, S.G.; di Nezio, M.S.; Centurion, M.E. Simultaneous determination of acesulfame-K and aspartame using linear sweep voltammetry and multivariate calibration. Microchem. J. 2013, 106, 347–350.
[10]
Nikolelis, D.P.; Pantoulias, S.; Krull, U.J.; Zeng, J. Electrochemical transduction of the interactions of the sweeteners acesulfame-K, saccharin and cyclamate with bilayer lipid membranes (BLMs). Electrochim. Acta. 2001, 46, 1025–1031.
[11]
Capitan-Vallvey, F.; Valencia, M.C.; Nicolas, E.A. Flow-through spectrophotometric sensor for the determination of aspartame in low-calorie and dietary products. Anal. Sci. 2004, 20, 1437–1442.
[12]
Rocha, F.; Rodenas-Torralba, E.; Morales-Rubio, A.; de la Guardia, M. A clean method for flow injection spectrophotometric determination of cyclamate in table sweeteners. Anal. Chim. Acta 2005, 547, 204–208.
Musto, C.J.; Lim, S.H.; Suslick, K.S. Colorimetric detection and identification of natural and artificial sweeteners. Anal. Chem. 2009, 81, 6526–6533.
[15]
Lim, S.H.; Musto, C.J.; Park, E.; Zhong, W.; Suslick, K.S. A colorimetric sensor array for detection and identification of sugars. Org. Lett. 2008, 10, 4405–4408.
Odaci, D.; Timur, S.; Telefoncu, A. Carboxyl esterase-alcohol oxidase based biosensor for the aspartame determination. Food Chem. 2004, 84, 493–496.
[21]
Kirg?z, U.A.; Odaci, D.; Timur, S.; Merko?i, A.; Alegret, S.; Be?ün, N.; Telefoncu, A. A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection. Anal. Chim. Acta 2006, 570, 165–169.
[22]
Male, K.B.; Luong, J.H.T.; Mulchandani, A. Determination of aspartame in dietary food products by a FIA biosensor. Biosens. Bioelectron. 1991, 6, 117–123.
[23]
Male, K.B.; Luong, J.H.T.; Gibbs, B.; Konishi, Y. An improved FIA biosensor for the determination of aspartame in dietary food products. Appl. Biochem. Biotech. 1993, 38, 189–201.
Kenneth, I.O.; Zhixin, Z.; Tebello, N. Immobilized cobalt(II) phthalocyanine—Cobalt(II) porphyrin pentamer at a glassy carbon electrode: Applications to efficient amperometric sensing of hydrogen peroxide in neutral and basic media. Electrochem Commun. 2005, 7, 679–684.
[26]
Philani, N.M.; Kenneth, I.O.; Tebello, N. Tetracarboxylic acid cobalt phthalocyanine SAM on gold: Potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor. Electrochim. Acta 2006, 52, 177–186.
[27]
Pena, R.M.; Lima, L.F.; Saraiva, M.L. Sequential injection analysis-based flow system for the enzymatic determination of aspartame. Anal. Chim. Acta 2004, 514, 37–43.
[28]
Villarta, R.L.; Suleiman, A.A.; Guilbault, G.G. Amperometric enzyme electrode for the determination of aspartame in diet food. Microchem. J. 1993, 48, 60–64.
[29]
Mulchandani, A.; Male, K.B.; Luong, J.H.T.; Gibbs, B.F. Enzymatic assay technique for the determination of aspartame. Anal. Chim. Acta 1990, 234, 465–469.