To address the bottleneck issues of an elastic-style six-axis force/torque sensor (six-axis force sensor), this work proposes a no-elastic piezoelectric six-axis force sensor. The operating principle of the piezoelectric six-axis force sensor is analyzed, and a structural model is constructed. The static-active design theory of the piezoelectric six-axis force sensor is established, including a static analytical/mathematical model and numerical simulation model (finite element model). A piezoelectric six-axis force sensor experimental prototype is developed according to the analytical mathematical model and numerical simulation model, and selected static characteristic parameters (including sensitivity, isotropic degree and cross-coupling) are tested using this model with three approaches. The measured results are in agreement with the analytical results from the static-active design method. Therefore, this study has successfully established a foundation for further research into the piezoelectric multi-axis force sensor and an overall design approach based on static characteristics.
References
[1]
Kim, H.M.; Yoon, J.; Kim, G.S. Development of a six-axis force/moment sensor for a spherical-type finger force measuring system. IET Sci. Meas. Technol. 2012, 6, 96–104.
[2]
Dwarakanath, T.A.; Bhutani, G. Beam type hexapod structure based six component force-torque sensor. Mechatronics 2011, 21, 1279–1287.
[3]
Liu, J.; Qin, L.; Li, M.; Liu, J.; Xue, L. Development of parallel piezoelectric six-axis force/torque sensor. Opt. Precis. Eng. 2011, 19, 1569–1579.
[4]
Zhang, W.G. A new distributing and decoupling method of six degree of freedom force sensors. J. Nanjing Univ. Aeronaut. Astronaut. 1999, 31, 221–222.
[5]
Chao, L.-P.; Chen, K.T. Shape optimal design and force sensitivity evaluation of six-axis force sensors. Sens. Actuators A Phys. 1997, 63, 105–112.
[6]
Wu, B.Y.; Wu, Z.C.; Shen, F. Study on inertia coupling characteristics of 6-axis force sensor in mult-dimensional acceleration field. Chin. J. Sen. Actuators 2008, 21, 1686–1690.
[7]
Dither, D. Measurement sensor for a linking wrench between two mechanical parts, as well as its manufacturing process. US Patent 5,821,431, 13 October 1998.
[8]
Liu, W.; Ling, S.; Jia, Z.Y.; Wang, Y.Q. Piezoelectric six axis heavy force sensor. China Invention Patent, Application Number 200710157931.2, 26 March 2008.
[9]
Liu, W.; Li, Y.J.; Jia, Z.Y.; Zhang, J.; Qian, M. Research on parallel load sharing principle of piezoelectric six-dimensional heavy force/torque sensor. Mech. Syst. Signal Process 2011, 25, 331–343.
[10]
Nemirovsky, Y.; Nemirovsky, A.; Muralt, P.; Setter, N. Design of a novel thin film piezoelectric accelerometer. Sens. Actuators A Phys. 1996, 56, 239–249.
[11]
Tong, Z.Z.; Jiang, H.Z.; He, J.F.; Duan, G.R. Optimal design of isotropy performance of six-dimensional force sensor based on standard stewart parallel structure lying on a circular hyperboloid of one sheet. Acta Aeronaut. et Astronaut. Sin. 2011, 32, 2327–2334.
[12]
Wang, Z.J.; Yao, J.T.; Xu, Y.D.; Zhao, Y.S. Hyperstatic analysis of a fully pre-stressed six-axis force/torque sensor. Mech. Mach. Theory 2012, 57, 84–94.
[13]
Liu, J. Study on Basic Theroy and Key Technologies of Flat Piezoelectric Six Axis Force/Torque Sensor. Ph.D. Thesis, Chongqing University, Chongqing, China, 2011.