The thermal conductivity of monolayer graphene nanoribbons (GNRs) with different tensile strain is investigated by using a nonequilibrium molecular dynamics method. Significant increasing amplitude of the molecular thermal vibration, molecular potential energy vibration and thermal conductivity vibration of stretching GNRs were detected. Some 20%~30% thermal conductivity decay is found in 9%~15% tensile strain of GNR cases. It is explained by the fact that GNR structural ridges scatter some low-frequency phonons which pass in the direction perpendicular to the direction of GNR stretching which was indicated by a phonon density of state investigation.
References
[1]
Lin, Y.M.; Jenkins, K.A.; Valdes-Garcia, A.; Small, J.P.; Farmer, D.B.; Avouris, P. Operation of graphene transistors at gigahertz frequencies. Nano Lett. 2009, 9, 422–426, doi:10.1021/nl803316h. 19099364
[2]
Wang, J.; Zhu, M.; Outlaw, R.A.; Zhao, X.; Manos, D.M.; Holloway, B.C. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 2004, 42, 2867–2872, doi:10.1016/j.carbon.2004.06.035.
[3]
van der Zande, A.M.; Barton, R.A.; Alden, J.S.; Ruiz-Vargas, C.S.; Whitney, W.S.; Pham, P.H.; Park, J.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Large-scale arrays of single-layer graphene resonators. Nano Lett. 2010, 10, 4869–4873, doi:10.1021/nl102713c.
[4]
Hu, B.; Yang, L.; Zhang, Y. Asymmetric heat conduction in nonlinear lattices. Phys. Rev. Lett. 2006, 97, 124302, doi:10.1103/PhysRevLett.97.124302. 17025972
[5]
Hu, J.N.; Ruan, X.L.; Chen, Y.P. Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study. Nano Lett. 2009, 9, 2730–2735, doi:10.1021/nl901231s. 19499898
[6]
Yang, N.; Zhang, G.; Li, B. Thermal rectification in asymmetric graphene ribbons. Appl. Phys. Lett. 2009, 95, 033107, doi:10.1063/1.3183587.
[7]
Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911, doi:10.1063/1.2907977.
[8]
Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau., C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907, doi:10.1021/nl0731872. 18284217
[9]
Cao, H.; Xiang, H.; Gong, Z. Unexpected large thermal rectification in asymmetric grain boundary of graphene. Solid State Commun. 2012, 152, 1807–1810, doi:10.1016/j.ssc.2012.07.013.
[10]
Cao, H.; Gong, Z.; Xiang, H. Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons. Phys. Lett. A 2012, 376, 525–528, doi:10.1016/j.physleta.2011.11.016.
[11]
Ghosh, S.; Bao, W.; Nika, D.L.; Subrina, S.; Pokatilov, E.P.; Lau, C.N.; Balandin, A.A. Dimensional crossover of thermal transport in few-layer graphene. Nature Mater. 2010, 9, 555–558, doi:10.1038/nmat2753.
[12]
Alexander, A.B. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 12, 569–581.
[13]
Denis, L.N.; Artur, S.A.; Alexander, A.B. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 2012, 12, 3238–3244, doi:10.1021/nl301230g. 22612247
[14]
Zhong, W.R.; Zhang, M.P.; Ai, B.Q.; Zheng, D.Q. Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study. Appl. Phys. Lett. 2011, 98, 113107, doi:10.1063/1.3567415.
[15]
Chien, S.K.; Yang, Y.T.; Chen, C.K. Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations. Appl. Phys. Lett. 2011, 98, 033107, doi:10.1063/1.3543622.
[16]
Shivaraman, S.; Barton, R.A.; Yu, X.; Alden, J.; Herman, L.; Chandrashekhar, M.; Park, J.; McEuen, P.L.; Parpia, J.M.; Craighead, H.G.; et al. Free-standing epitaxial grapheme. Nano Lett. 2009, 9, 3100–3105, doi:10.1021/nl900479g. 19663456
[17]
Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385, doi:10.1126/science.1157996. 18635798
[18]
Yu, M.F.; Files, B.S.; Arepalli, S.; Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552, doi:10.1103/PhysRevLett.84.5552. 10990992
[19]
Cheng, Y.C.; Zhu, Z.Y.; Schwingenschl?gl, U. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction. J. Mater. Chem. 2012, 22, 24676–24680, doi:10.1039/c2jm34068b.
[20]
Jiang, J.W.; Lan, J.; Wang, J.S.; Li, B. Isotopic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism. J. Appl. Phys. 2010, 107, 054314, doi:10.1063/1.3329541.
[21]
Yang, L.; Tong, L.; He, X. MD simulation of carbon nanotube pullout behavior and its use in determining mode I delamination toughness. Comput. Mater. Sci. 2012, 55, 356–364, doi:10.1016/j.commatsci.2011.12.014.
[22]
Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applicationss overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364, doi:10.1021/jp980939v.
[23]
Guo, Z.; Zhang, D.; Gong, X.G. Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 2009, 95, 163103, doi:10.1063/1.3246155.
[24]
Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The structure of suspended graphene sheets. Nature. 2007, 446, 60–63, doi:10.1038/nature05545. 17330039