In this paper a refractive index sensor based on localized surface plasmon resonance (LSPR) in a Plastic Optical Fiber (POF), is presented and experimentally tested. LSPR is achieved exploiting five-branched gold nanostars (GNS) obtained using Triton X-100 in a seed-growth synthesis. They have the uncommon feature of three localized surface plasmon resonances. The strongest LSPRs fall in two ranges, one in the 600–900 nm range (LSPR 2) and the other one in the 1,100–1,600 nm range (LSPR 3), both sensible to refractive index changes. Anyway, due to the extremely strong attenuation (>10 2 dB/m) of the employed POF in the 1,100–1,600 nm range, only LSPR 2 will be exploited for refractive index change measurements, useful for bio-chemical sensing applications, as a proof of principle of the possibility of realizing a compact, low cost and easy-to-use GNS based device.
Cennamo, N.; Pesavento, M.; D'Agostino, G.; Galatus, R.; Bibbò, L.; Zeni, L. Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens. Actuator B: Chem. 2013, 188, 221–226.
[5]
Garcia, M.A. Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D Appl. Phys. 2011, 44, doi:10.1088/0022-3727/44/28/283001.
[6]
Karabchevsky, A.; Auslender, M.; Abdulhalim, I. Dual-surface plasmon excitation with thin metallic nanoslits. J. Nanophoton. 2011, 5, doi:10.1117/1.3609276.
[7]
Karabchevsky, A.; Krasnykov, O.; Abdulhalim, I.; Hadad, B.; Goldner, A.; Auslender, M.; Hava, S. Metal grating on a substrate nanostructure for sensor applications. Photon. Nanostruct. Fundam. Appl. 2009, 7, 170–175.
[8]
Karabchevsky, A.; Krasnykov, O.; Auslender, M.; Hadad, B.; Goldner, A.; Abdulhalim, I. Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment. J. Plasmon. 2009, 4, 281–292.
[9]
Pallavicini, P.; Dona`, A.; Casu, A.; Chirico, G.; Collini, M.; Dacarro, G.; Falqui, A.; Milanese, C.; Sironic, L.; Tagliettia, A. Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem. Commun. 2013, 49, 6265–6267.
[10]
Cennamo, N.; Massarotti, D.; Conte, L.; Zeni, L. Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 2011, 11, 11752–11760.
[11]
Garwe, F.; Csàki, A.; Maubach, G.; Steinbruck, A.; Weise, A.; Konig, K.; Fritzsche, W. Laser pulse energy conversion on sequence-specifically bound metal nanoparticles and its application for DNA manipulation. Med. Laser Appl. 2005, 20, 201–206.
[12]
Cennamo, N.; Varriale, A.; Pennacchio, A.; Staiano, M.; Massarotti, D.; Zeni, L.; D'Auria, S. An innovative plastic optical fiber-based biosensor for new bio/applications. The case of celiac disease. Sens. Actuator B: Chem. 2013, 176, 1008–1014.
[13]
Hong, Y.; Huh, Y.; Yoon, D.S.; Yang, J. Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J. Nanomater. 2012, 2012, doi:10.1155/2012/759830.