全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Localized Surface Plasmon Resonance with Five-Branched Gold Nanostars in a Plastic Optical Fiber for Bio-Chemical Sensor Implementation

DOI: 10.3390/s131114676

Keywords: localized surface plasmon resonance, plastic optical fiber, gold nanostars, chemical sensors

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper a refractive index sensor based on localized surface plasmon resonance (LSPR) in a Plastic Optical Fiber (POF), is presented and experimentally tested. LSPR is achieved exploiting five-branched gold nanostars (GNS) obtained using Triton X-100 in a seed-growth synthesis. They have the uncommon feature of three localized surface plasmon resonances. The strongest LSPRs fall in two ranges, one in the 600–900 nm range (LSPR 2) and the other one in the 1,100–1,600 nm range (LSPR 3), both sensible to refractive index changes. Anyway, due to the extremely strong attenuation (>10 2 dB/m) of the employed POF in the 1,100–1,600 nm range, only LSPR 2 will be exploited for refractive index change measurements, useful for bio-chemical sensing applications, as a proof of principle of the possibility of realizing a compact, low cost and easy-to-use GNS based device.

References

[1]  Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.
[2]  Shao, Y.; Xu, S.; Zheng, X.; Wang, Y.; Xu, W. Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer. Sensors 2010, 10, 3585–3596.
[3]  Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24.
[4]  Cennamo, N.; Pesavento, M.; D'Agostino, G.; Galatus, R.; Bibbò, L.; Zeni, L. Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens. Actuator B: Chem. 2013, 188, 221–226.
[5]  Garcia, M.A. Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D Appl. Phys. 2011, 44, doi:10.1088/0022-3727/44/28/283001.
[6]  Karabchevsky, A.; Auslender, M.; Abdulhalim, I. Dual-surface plasmon excitation with thin metallic nanoslits. J. Nanophoton. 2011, 5, doi:10.1117/1.3609276.
[7]  Karabchevsky, A.; Krasnykov, O.; Abdulhalim, I.; Hadad, B.; Goldner, A.; Auslender, M.; Hava, S. Metal grating on a substrate nanostructure for sensor applications. Photon. Nanostruct. Fundam. Appl. 2009, 7, 170–175.
[8]  Karabchevsky, A.; Krasnykov, O.; Auslender, M.; Hadad, B.; Goldner, A.; Abdulhalim, I. Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment. J. Plasmon. 2009, 4, 281–292.
[9]  Pallavicini, P.; Dona`, A.; Casu, A.; Chirico, G.; Collini, M.; Dacarro, G.; Falqui, A.; Milanese, C.; Sironic, L.; Tagliettia, A. Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem. Commun. 2013, 49, 6265–6267.
[10]  Cennamo, N.; Massarotti, D.; Conte, L.; Zeni, L. Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 2011, 11, 11752–11760.
[11]  Garwe, F.; Csàki, A.; Maubach, G.; Steinbruck, A.; Weise, A.; Konig, K.; Fritzsche, W. Laser pulse energy conversion on sequence-specifically bound metal nanoparticles and its application for DNA manipulation. Med. Laser Appl. 2005, 20, 201–206.
[12]  Cennamo, N.; Varriale, A.; Pennacchio, A.; Staiano, M.; Massarotti, D.; Zeni, L.; D'Auria, S. An innovative plastic optical fiber-based biosensor for new bio/applications. The case of celiac disease. Sens. Actuator B: Chem. 2013, 176, 1008–1014.
[13]  Hong, Y.; Huh, Y.; Yoon, D.S.; Yang, J. Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J. Nanomater. 2012, 2012, doi:10.1155/2012/759830.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133