Tetradenia riparia (Hochstetter) Codd belongs to the Lamiaceae family and it was introduced in Brazil as an exotic ornamental plant. A previous study showed its antimicrobial, acaricidal and analgesic activities. Two compounds were isolated from essential oil of T. riparia leaves and identified as 9β,13β-epoxy-7-abietene ( 1), a new one, and 6,7-dehydroroyleanone ( 2), already reported for another plant. The structure of these compounds was determined by spectroscopic analysis and by comparison with literature data. The cytotoxic activities of the essential oil and compounds 1 and 2 were determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and by tumor cells MDA-MB-435 (human breast carcinoma), HCT-8 (human colon), SF-295 (human nervous system) and HL-60 (human promyelocytic leukemia). The essential oil and compound 1 showed high cytotoxic potential of the cell lines SF-295 (78.06% and 94.80%, respectively), HCT-8 (85.00% and 86.54%, respectively) and MDA-MB-435 (59.48% and 45.43%, respectively). Compound 2 had no cytotoxic activity. The antioxidant activity was determined by 2,2-diphenyl-1-picryl-hydrazyl (DPPH), β-carotene-linoleic acid system and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The inhibitory concentration (IC 50 in μg mL ?1) for essential oil and compound 2 was, respectively 15.63 and 0.01 for DPPH; 130.1 and 109.6 for β-carotene-linoleic acid and 1524 and 1024 for ABTS. Compound 1 had no antioxidant activity. By fractioning the oil, it was possible to identify two unpublished compounds: 1 with high cytotoxic potential and 2 with high antioxidant potential.
References
[1]
Weaver, D.K.; Dunkel, F.V.; van Puyvelde, L.; Richards, D.C.; Frizgerald, G.W. Toxicity and protectant potential of the essential oil of Tetradenia riparia (Lamiales, Lamiaceae) against Zabrotes subfasciatus (Col., Bruchidae) infesting dried pinto beans (Fabales, Leguminosae). J. Appl. Entomol. 1994, 118, 179–196, doi:10.1111/j.1439-0418.1994.tb00793.x.
[2]
Campbell, W.E.; Gammon, D.W.; Smith, P.; Abrahams, M.; Purves, T. Composition and antimalarial activity in vitro of the essential oil of Tetradenia riparia. Planta Med. 1997, 63, 270–272, doi:10.1055/s-2006-957672.
[3]
Van Puyvelde, L.; Nyirankuliza, S.; Panebianco, R.; Boily, Y.; Geizer, I.; Sebikali, B.; de Kimpe, N.; Schamp, N. Active principles of Tetradenia riparia. I. Antimicrobial activity of 8(14),15-sandaracopimaradiene-7α,18-diol. J. Ethnopharmacol. 1986, 17, 269–275, doi:10.1016/0378-8741(86)90115-7.
[4]
Van Puyvelde, L.; Lefebvre, R.; Mugabo, P.; de Kimpe, N.; Schamp, N. Active principle of Tetradenia riparia. II. Antispasmodic activity of 8(14),15-sandaracopimaradiene-7α,18-diol. Planta Med. 1987, 53, 156–158, doi:10.1055/s-2006-962660.
[5]
Van Puyvelde, L.; de Kimpe, N. Tetradenolide, an α-Pirone from Tetradenia riparia. Phytochemistry 1998, 49, 1157–1158, doi:10.1016/S0031-9422(98)00112-5.
[6]
Zelnik, R.; Rabenhorst, E.; Matida, A.K.; Gottlieb, H.E.; Lavie, D.; Panizza, S. Ibosol, a new diterpenoid from Iboza riparia. Phytochemistry 1978, 17, 1795–1797, doi:10.1016/S0031-9422(00)88701-4.
[7]
Valmorbida, J.; Boaro, C.F.S.; Marques, M.O.M.; Ferri, A.F. Rendimento e composi??o química de óleos essenciais de Mentha piperita L. cultivada em solu??o nutritiva com diferentes concentra??es de potássio. Rev. Bras. Pl. Med. 2006, 8, 56–61.
[8]
Gazim, Z.C.; Amorim, A.C.L.; Hovell, A.M.C.; Rezende, C.M.; Nascimento, I.A.; Ferreira, G.A.; Cortez, D.A.G. Seasonal variation, chemical composition, and analgesic and antimicrobial activities of the essential oil from leaves of Tetradenia riparia (Hochst.) Codd in Southern Brazil. Molecules 2010, 15, 5509–5524, doi:10.3390/molecules15085509.
[9]
Van Puyvelde, L.; de Kimpe, N.; Dubé, S.; Chagnon-Dubé, M.; Boily, Y.; Borremans, F.; Schamp, N.; Anteunis, M.J. 1',2'-Dideacetylboronolide, an α-pyrone from Iboza riparia. Phytochemistry 1981, 20, 2753–2755, doi:10.1016/0031-9422(81)85280-6.
[10]
Davies-Coleman, M.T.; Rivett, D.E.A. Structure of the 5,6-dihydro-α-pyrone, umuravumbolide. Phytochemistry 1995, 38, 791–792, doi:10.1016/0031-9422(95)93874-F.
[11]
Van Puyvelde, L.; Ntawukiliyayo, J.D.; Portaels, F. In vitro inhibition of mycobacteria by Rwandese medicinal plants. Phytother. Res. 1994, 8, 65–69, doi:10.1002/ptr.2650080202.
[12]
Omolo, M.O.; Okinyo, D.; Ndiege, I.O.; Lwande, W.; Hassanali, A. Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochemistry 2004, 65, 2797–2802, doi:10.1016/j.phytochem.2004.08.035.
[13]
Gazim, Z.C.; Demarchi, I.G.; Lonardoni, M.V.C.; Amorim, A.C.L.; Hovell, A.M.C.; Rezende, C.M.; Ferreira, G.A.; Lima, E.L.; Cosmo, F.A.; Cortez, D.A.G. Acaricidal activity of the essential oil from Tetradenia riparia (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari; Ixodidae). Exp. Parasitol. 2011, 129, 175–178, doi:10.1016/j.exppara.2011.06.011.
[14]
Nickavar, B.; Kamalinejad, M.; Izadpanah, H. In vitro free radical scavenging activity of five Salvia species. Pak. J. Pharm. Sci. 2007, 20, 291–294.
Fan, P.; Lou, H. Effects of polyphenols from grape seeds on oxidative damage to cellular DNA. Mol. Cell. Biochem. 2004, 267, 67–74, doi:10.1023/B:MCBI.0000049366.75461.00.
[17]
Bronzetti, G.; Cini, M.; Andreoli, E.; Caltavuturo, L.; Panunzio, M.; Croce, C.D. Protective effects of vitamin and selenium compound in yeast. Mutat. Res. Gen. Toxicol. Enviroment. Mutagen. 2001, 429, 105–115.
[18]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bodesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer—Drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112, doi:10.1093/jnci/82.13.1107.
[19]
Berridge, M.V.; Tan, A.S.; McCoy, K.D.; Wang, R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 1996, 4, 14–19.
[20]
Kusumoto, N.; Ashitani, T.; Hayasaka, Y.; Murayama, T.; Ogiyama, K.; Takahashi, K. Antitermitic activities of abietane-type diterpenes from Taxodium distichum cones. J. Chem. Ecol. 2009, 35, 635–642, doi:10.1007/s10886-009-9646-0.
[21]
Mossman, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63, doi:10.1016/0022-1759(83)90303-4.
[22]
Suhaj, M. Spice antioxidants isolation and their antiradical activity: A review. J. Food Compost. Anal. 2006, 19, 531–537, doi:10.1016/j.jfca.2004.11.005.
[23]
USDA. Agricultural Research Service, Germplasm Resources Information Network, National Genetic Resources Program. Dr. Duke’s Phytochemical and Ethnobotanical Databases. Available online: http://www.ars-grin.gov/duke/ (accessed on 25 June 2013).
[24]
Rodriguez, B. Spectral assignments and reference data. Magn. Reson. Chem. 2003, 41, 741–746, doi:10.1002/mrc.1245.
[25]
Mour?o, F.; Umeo, S.H.; Takemura, O.S.; Linde, G.A.; Colauto, N.B. Antioxidant activity of Agaricus brasiliensis basidiocarps on different maturation phases. Braz. J. Microbiol. 2011, 42, 197–202, doi:10.1590/S1517-83822011000100024.
[26]
Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219.
[27]
Kumaran, A.; Karunakaran, R.J. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006, 97, 109–114, doi:10.1016/j.foodchem.2005.03.032.
[28]
Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of Selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157, doi:10.1021/jf051960d.