This study investigated the antioxidative and obsteoblast differentiation promoting activity of the phenolics isolated from the 70% ethanol extract of the roots of Livistona chinensis. Two new phenolics, (2 R,3 R)-3,5,6,7,3',4'-hexahydroxyflavane ( 1), and phenanthrene-2,4,9-triol ( 2), together with six known phenolics 3– 8, were isolated and identified on the basis of extensive spectroscopic analysis. The antioxidative and obsteoblast differentiation promoting abilities of the compounds 1– 3, 7– 8 were tested, the phenolics 1– 3, 7 showed effects on proliferation of osteoblastic cells and antioxidative activity of 3.125–50 μg/mL. In addition, the phenolics 1– 3 observably increased alkaline phosphatase activity, osteocalcin content and hydroxyproline content in osteoblastic cells. Phenolic 1 at 12.5 μg/mL concentration significantly increased the area of nodules by about 9.35-fold. The antioxidative activity results indicated that the anti-osteoporosis effects of these phenolics may be linked to a reduction of oxidative stress. The observed effects of these phenolics on bone formation by rat osteoblastic cells suggest that these phenolics may have beneficial effects on bone health.
References
[1]
Ozgocmen, S.; Kaya, H.; Fadilliogl, E.; Aydogan, R.; Yilmaz, Z. Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol. Cell. Biochem. 2007, 295, 45–52, doi:10.1007/s11010-006-9270-z.
[2]
Overton, T.R.; Basu, T.K. Longitudinal changes in radial bone density in older men. Eur. J. Clin. Nutr. 1999, 53, 211–215.
[3]
Linnane, A.W.; Eastwood, H. Cellular redox regulation and prooxidant signaling systems, a new perspective on the free radical theory of aging. Ann. N. Y. Acad. Sci. 2006, 1067, 47–55.
[4]
Sendur, O.F.; Turan, Y.; Tastaban, E.; Serter, M. Antioxidant status in patients with osteoporosis: A controlled study. Joint Bone Spine 2009, 76, 514–518, doi:10.1016/j.jbspin.2009.02.005.
[5]
Mody, N.; Parhami, F.; Saraflan, T.A.; Demer, L.L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 2001, 31, 509–519, doi:10.1016/S0891-5849(01)00610-4.
[6]
Fatokun, A.A.; Stone, T.W.; Smith, R.A. Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species. Eur. J. Pharm. 2008, 587, 35–41, doi:10.1016/j.ejphar.2008.03.024.
[7]
Yang, S.; Madyastha, P.; Bingel, S.; Ries, W.; Key, L. A new superoxide-generating oxidase in murine osteoclasts. J. Bio. Chem. 2001, 276, 5452–5458, doi:10.1074/jbc.M001004200.
[8]
Sontakke, A.N.; Tare, R.S. A duality in the roles of reactive oxygen species with respect bone metabolism. Clin. Chim. Acta 2002, 318, 145–148, doi:10.1016/S0009-8981(01)00766-5.
[9]
Healthy Ministry of Guangzhou Force Logistics. Common Chinese Herbal Medicine Handbook; People’s Health Publishing House: Beijing, China, 1969.
[10]
Zhao, G.P.; Dai, S.; Chen, E.S. Dictionary of Traditional Chinese Medicine; Shanghai Science and Technology Press: Shanghai, China, 2001.
[11]
Chen, P.; Yang, J.S. Studies on chemical constituents of Livistona chinensis seeds. Chin. Tradit. Herb Drugs 2007, 8, 665–667.
[12]
Chen, P.; Yang, J.S. Studies on chemical constituents of Livistona chinensis seeds. Chin. Pharm. J. 2008, 43, 1669–1670.
[13]
Tao, Y.; Yang, S.P.; Zhang, H.Y.; Liao, S.G.; Wei, W.; Yan, W.; Wu, Y.; Tang, X.C.; Yue, J.M. Phenolic compounds with cell protective activity from the fruits of Livistona chinensis. J. Asian Nat. Prod. Res. 2009, 11, 243–249, doi:10.1080/10286020802684631.
Lian, B.J.; Stein, G.S.; Canalis, E.; Robey, P.G.; Boskey, A.L. Bone Formation: Osteoblast Lineage Cells, Growth Factors, Matrix Proteins and the Mineralization Process. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism; Favus, M.J., Ed.; Lippincott Williams & Williams: Philadelphia, PA, USA, 1999; p. 461.
[22]
Tong, A.L.; Chen, L.L.; Ding, G.Z. Progress of mechanism of osteoblastic bone formation. Chin. J. Osteoporos. 1999, 5, 60–64.
[23]
Lee, N.K.; Sowa, H.; Hinoi, E.; Ferron, M.; Ahn, J.D.; Confavreux, C.; Dacquin, R.; Mee, P.J.; McKee, M.D.; Jung, D.Y.; et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007, 130, 456–469, doi:10.1016/j.cell.2007.05.047.
[24]
Sakano, S.; Murata, Y.; Miura, T. Collagen and alkaline phosphatase gene expression during bone morphogenetic protein (BMP)-induced cartilage and bone differentiation. Clin. Orthop. Relat. Res. 1993, 292, 337–344.
[25]
Riggs, B.L.; Melton, L.J. The prevention and treatment of osteoporosis. N. Engl. J. Med. 1992, 327, 620–627, doi:10.1056/NEJM199208273270908.
[26]
Nohl, H. Involvement of free radicals in ageing: A consequence or cause of senescence. Br. Med. Bull. 1993, 49, 653–657.
[27]
Basu, K.; Micha?lsson, H.; Olofsson, H.; Johansson, S.; Melhus, H. Association between oxidative stress and bone mineral density. Biochem. Biophys. Res. Commun. 2001, 288, 275–279, doi:10.1006/bbrc.2001.5747.
[28]
Muthusami, S.; Ramachandran, I.; Muthusamy, B.; Vasudevan, G.; Prabhu, V.; Subramaniam, V.; Jagadeesan, A.; Narasimhan, S. Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin. Chim. Acta 2005, 360, 81–86, doi:10.1016/j.cccn.2005.04.014.
[29]
Isomura, H.; Fujie, K.; Shibata, K.; Inoue, N.; Iizuka, T.; Takebe, G.; Takahashi, K.; Nishihira, J.; Izumi, H.; Sakamoto, W. Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology 2004, 197, 93–100.
[30]
Yalin, S.; Bagis, S.; Aksit, S.C.; Arslan, H.; Erdogan, C. Effect of free radicals and antioxidants on postmenopausal osteoporosis. Asian J. Chem. 2006, 18, 1091–1096.
[31]
Zhang, D.W.; Cheng, Y.; Wang, N.L.; Zhang, J.C.; Yang, M.S.; Yao, X.S. Effects of total flavonoids and flavonol glycosides from Epimedium koreanum Nakai on the proliferation and differentiation of primary osteoblasts. Phytomedicine 2008, 15, 55–61, doi:10.1016/j.phymed.2007.04.002.
[32]
Zeng, X.B.; Su, Y.J.; Zheng, Y.Y.; Cui, L. Osteogenic effects of the flavanes from green tea polyphenols. Acta Pharmacol. Sin. 2013, S2, 34.
[33]
Declercq, H.; Vreken, N.V.; Maeyer, E.D.; Verbeeck, R.; Schacht, E.; Ridder, L.D.; Cornelissen, M. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: Comparison of different isolation techniques and source. Biomaterials 2004, 25, 757–768, doi:10.1016/S0142-9612(03)00580-5.
[34]
He, X.J.; Liu, R.H. Triterpenoids isolated from apple peels maybe responsible for their anticancer activity. J. Agric. Food Chem. 2007, 55, 4366–4370, doi:10.1021/jf063563o.
[35]
Rao, L.G.; Liu, L.J.; Murray, T.M.; McDermott, E.; Zhang, X. Estrogen added intermittently but not continuously, stimulates differentiation and bone formation in SaOS-2 cells. Biol. Pharm. Bull. 2003, 26, 936–945, doi:10.1248/bpb.26.936.
[36]
Hale, L.V.; Ma, Y.F.; Santerre, R.F. Semi-quantitative fluorescence analysis of calcein binding as a measurement of in vitro mineralization. Calcif. Tissue Int. 2000, 67, 80–84, doi:10.1007/s00223001101.
[37]
Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food. Chem. 1995, 43, 27–32, doi:10.1021/jf00049a007.
[38]
Manolagas, S.C. De-fense! De-fense! De-fense: Scavenging H2O2 while making cholesterol. Endocrinology 2008, 149, 3264–3266, doi:10.1210/en.2008-0402.
[39]
Garrett, J.R.; Boyce, B.F.; Oreffo, R.O.; Bonewald, L.; Poser, J.; Mundy, G.R. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Invest. 1990, 85, 632–639, doi:10.1172/JCI114485.