A procedure for fabrication of photomasks on photographic films with minimum feature achievable of about 20 μm, which are particularly suitable for the fast prototyping of microfluidic devices, has been improved. We used a commercial photographic enlarger in reverse mode obtaining 10:1 reduction factor with error less than 1%. Masks have been characterized by optical transmission measurement and contact profilometry: the exposed region completely absorbs light in the wavelength region explored, while the non-exposed region is transparent from 350 nm on; the average film thickness is of 410 nm and its roughness is about 120 nm. A PDMS microfluidic device has been realized and tested in order to prove the effectiveness of designed photomasks used with the common UV light box.
Duffy, D.C.; Schueller, O.J.A.; Brittain, S.T.; Whitesides, G.M. Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow. J. Micromech. Microeng. 1999, 9, 211–217, doi:10.1088/0960-1317/9/3/301.
[3]
Jo, B.-H.; van Lerberghe, L.M.; Motsegood, K.M.; Beebe, D.J. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 2000, 9, 76–81.
[4]
McDonald, J.C.; Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 2002, 35, 491–499, doi:10.1021/ar010110q.
[5]
Park, E.S.; Jang, D.; Lee, J.; Kim, Y.J.; Na, J.; Ji, H.; Choi, J.W.; Kim, G.-T. Maskless optical microscope lithography system. Rev. Sci. Instrum. 2009, 80, 126101, doi:10.1063/1.3266965.
[6]
Chung, S.E.; Park, W.; Park, H.; Yu, K.; Park, N.; Kwon, S. Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl. Phys. Lett. 2007, 91, 041106, doi:10.1063/1.2759988.
[7]
Cheng, J.-Y.; Yen, M.-H.; Wei, C.-W.; Chuang, Y.-C.; Young, T.-H. Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J. Micromech. Microeng. 2005, 15, 1147–1156, doi:10.1088/0960-1317/15/6/005.
[8]
Ambrosio, A.; Orabona, E.; Maddalena, P.; Camposeo, A.; Polo, M.; Neves, A.A.R.; Pisignano, D.; Carella, A.; Borbone, F.; Roviello, A. Two-photon patterning of a polymer containing Y-shaped azochromophores. Appl. Phys. Lett. 2009, 94, 011115, doi:10.1063/1.3058820.
[9]
Qin, D.; Xia, Y.; Whitesides, G.M. Rapid prototyping of complex structures with feature sizes larger than 20 μm. Adv. Mater. 1996, 8, 917–919, doi:10.1002/adma.19960081110.
[10]
Linder, V.; Wu, H.; Jiang, X.; Whitesides, G.M. Rapid prototyping of 2D structures with feature sizes larger than 8 μm. Anal. Chem. 2003, 75, 2522–2527, doi:10.1021/ac026441d.
[11]
Fan, Y.; Liu, Y.; Li, H.; Foulds, I.G. Printed wax masks for 254 nm deep-UV pattering of PMMA-based microfluidics. J. Micromech. Microeng. 2012, 22, 027001, doi:10.1088/0960-1317/22/2/027001.
[12]
Deng, T.; Wu, H.; Brittain, S.T.; Whitesides, G.M. Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction. Anal. Chem. 2000, 72, 3176–3180, doi:10.1021/ac991343m.
[13]
Bruning, J.H. Optical lithography: 40 years and holding. Optical Microlithogr. XX 2007, Proc. SPIE 6520, 652004–652004, doi:10.1117/12.720631.
[14]
Hoettges, K.F.; Gwilliam, R.M.; Homewood, K.P.; Stevenson, D. Fast prototyping of microfluidic devices for separation science. Chromatographia 2001, 53, 424–426.
[15]
Deng, T.; Arias, F.; Ismagilov, R.F.; Kenis, P.J.A.; Whitesides, G.M. Fabrication of metallic microstructures using exposed, developed silver halide-based photographic film. Anal. Chem. 2000, 72, 645–651, doi:10.1021/ac991010p.
[16]
Christenson, A.M.; Augustine, B.H. Rapid prototyping of masks from various 35mm film types for use in photolithography. In Presented at the National Conference on Undergraduate Research (NCUR), Missoula, MT, USA, 26–29 April 2000.
[17]
Kingslake, R. Optics in Photography; SPIE Publications: Bellingham, WA, USA, 1992.
[18]
Bjelkhagen, H.I. Silver-Halide Recording Materials: For Holography and Their Processing; Springer: New York, NY, USA, 1995.
[19]
MicroChem SU-8 2000 Permanent Epoxy Resists Datasheet. Available online: http://www.microchem.com/Prod-SU82000.htm (accessed on 31 August 2011).
[20]
Del Campo, A.; Greiner, C. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 2007, 17, R81, doi:10.1088/0960-1317/17/6/R01.