全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Electronics  2013 

Implantable Devices: Issues and Challenges

DOI: 10.3390/electronics2010001

Keywords: implantable electronic device, bioresorbable electronics, radio-frequency (RF) wireless powering, encapsulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ageing population and a multitude of neurological and cardiovascular illnesses that cannot be mitigated by medication alone have resulted in a significant growth in the number of patients that require implantable electronic devices. These range from sensors, gastric and cardiac pacemakers, cardioverter defibrillators, to deep brain, nerve, and bone stimulators. Long-term implants present specific engineering challenges, including low energy consumption and stable performance. Resorbable electronics may offer excellent short-term performance without the need for surgical removal. However, most electronic materials have poor bio- and cytocompatibility, resulting in immune reactions and infections. This paper reviews the current situation and highlights challenges for future advancements.

References

[1]  Majerus, S.J.A.; Garverick, S.L.; Suster, M.A.; Fletter, P.C.; Damaser, M.S. Wireless, ultra-low-power implantable sensor for chronic bladder pressure monitoring. J. Emerg. Technol. Comput. Syst. 2012, 8, 1–13.
[2]  Cheng, A.; Tereshchenko, L.G. Evolutionary innovations in cardiac pacing. J. Electrocardiol. 2011, 44, 611–615.
[3]  Bolz, A. Cardiac Pacemaker Systems. In Springer Handbook of Medical Technology; Kramme, R., Hoffmann, K.-P., Eds.; Springer: Heidelberg, Germany, 2012; pp. 767–783.
[4]  Boveda, S.; Garrigue, S.; Ritter, P. The History of Cardiac Pacemakers and Defibrillators. In Dawn and Evolution of Cardiac Procedures; Picichè, M., Ed.; Springer: Milan, Italy, 2013; pp. 253–264.
[5]  Halperin, D.; Kohno, T.; Heydt-Benjamin, T.S.; Fu, K.; Maisel, W.H. Security and privacy for implantable medical devices. IEEE Pervasive Comput. 2008, 7, 30–39, doi:10.1109/MPRV.2008.16.
[6]  Stellbrink, C.; Trappe, H.-J. The follow-up of cardiac devices: What to expect for the future? Eur. Heart J. Suppl. 2007, 9, I113–I115, doi:10.1093/eurheartj/sum071.
[7]  Pararas, E.E.L.; Borkholder, D.A.; Borenstein, J.T. Microsystems technologies for drug delivery to the inner ear. Adv. Drug Deliv. Rev. 2012, 64, 1650–1660, doi:10.1016/j.addr.2012.02.004.
[8]  Lee, S.; Park, M.; Park, C.; Lee, J.; Prausnitz, M.; Choy, Y. Microchip for sustained drug delivery by diffusion through microchannels. AAPS PharmSciTech 2012, 13, 211–217, doi:10.1208/s12249-011-9743-6.
[9]  Lowrie, C.; Desmulliez, M.P.Y.; Hoff, L.; Elle, O.J.; Fosse, E. Fabrication of a MEMS accelerometer to detect heart bypass surgery complications. Sens. Rev. 2009, 29, 319–325, doi:10.1108/02602280910986557.
[10]  Stevenson, C.L.; Santini, J.T., Jr.; Langer, R. Reservoir-based drug delivery systems utilizing microtechnology. Adv. Drug Deliv. Rev. 2012, 64, 1590–1602, doi:10.1016/j.addr.2012.02.005.
[11]  Chirra, H.D.; Desai, T.A. Emerging microtechnologies for the development of oral drug delivery devices. Adv. Drug Deliv. Rev. 2012, 64, 1569–1578, doi:10.1016/j.addr.2012.08.013.
[12]  Millet, L.J.; Corbin, E.A.; Free, R.; Park, K.; Kong, H.; King, W.P.; Bashir, R. Characterization of mass and swelling of hydrogel microstructures using MEMS resonant mass sensor arrays. Small 2012, 8, 2555–2562, doi:10.1002/smll.201200470.
[13]  Godin, B.; Hu, Y.; Francesca, S.; Ferrari, M. Cardiovascular Nanomedicine: Challenges and opportunities. In Molecular and Translational Vascular Medicine; Homeister, J.W., Willis, M.S., Eds.; Humana Press: New York, NY, USA, 2012; pp. 249–281.
[14]  Akbari, S.; Shea, H.R. An array of 100 μm × 100 μm dielectric elastomer actuators with 80% strain for tissue engineering applications. Sens. Actuators A: Phys. 2012, 186, 236–241, doi:10.1016/j.sna.2012.01.030.
[15]  Ting, L.H.; Sniadecki, N.J. Biological microelectromechanical systems (BioMEMS) devices. In Comprehensive Biomaterials, 1st; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2011; pp. 257–276.
[16]  Soon, C.F.; Youseffi, M.; Berends, R.F.; Blagden, N.; Denyer, M.C.T. Development of a novel liquid crystal based cell traction force transducer system. Biosens. Bioelectron. 2013, 39, 14–20, doi:10.1016/j.bios.2012.06.032.
[17]  Gasson, M.; Kosta, E.; Bowman, D. Human ICT implants: From invasive to pervasive. In Human ICT Implants: Technical, Legal and Ethical Considerations; Gasson, M.N., Kosta, E., Eds.; T.M.C. Asser Press: The Hague, The Netherlands, 2012; Volume 23, pp. 1–8.
[18]  Ko, W.H. Early history and challenges of implantable electronics. J. Emerg. Technol. Comput. Syst. 2012, 8, 1–9, doi:10.1145/2180878.2180880.
[19]  Kennergren, C. Reliability of cardiac implantable electronic device leads. Europace 2012, doi:10.1093/europace/eus349.
[20]  Von Lueder, T.G.; Krum, H. Current modalities for invasive and non-invasive monitoring of volume status in heart failure. Heart 2012, 98, 967–973, doi:10.1136/heartjnl-2011-301330.
[21]  Rapoport, B.I.; Kedzierski, J.T.; Sarpeshkar, R. A glucose fuel cell for implantable brain-machine interfaces. PLoS One 2012, 7, doi:10.1371/journal.pone.0038436.
[22]  Justin, G.A.; Zhang, Y.; Sun, M.; Sclabassi, R. Biofuel cells: A possible power source for implantable electronic devices. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2004, 6, 4096–4099.
[23]  Occhiuzzi, C.; Contri, G.; Marrocco, G. Design of implanted RFID tags for passive sensing of human body: the STENTag. Antennas Propag., IEEE Trans. 2012, 60, 3146–3154, doi:10.1109/TAP.2012.2198189.
[24]  Manoli, Y.; Hehn, T.; Hoffmann, D.; Kuhl, M.; Lotze, N.; Maurath, D.; Moranz, C.; Rossbach, D.; Spreemann, D. Energy Harvesting and Chip Autonomy. In Chips 2020; Hoefflinger, B., Ed.; Springer: Heidelberg, Germany, 2012; pp. 393–420.
[25]  Chen, H.C.; Lee, W.K. Battery-less ASK/O-QPSK transmitter for medical implants. Electron. Lett. 2012, 48, 1036–1038, doi:10.1049/el.2012.1172.
[26]  Hammond, R.L.; Hanna, K.; Morgan, C.; Perakis, P.; Najafi, N.; Long, G.W.; Shanley, C.J. A wireless and battery-less miniature intracardiac pressure sensor: Early implantation studies. ASAIO J. 2012, 58, 83–87, doi:10.1097/MAT.0b013e318239f2e9.
[27]  Qingyun, M.; Haider, M.R.; Massoud, Y. A Low-Loss Rectifier Unit for Inductive-Powering of Biomedical Implants. In Proceedings of the IEEE/IFIP 19th International Conference on VLSI and System-on-Chip, Kowloon, HongKong, October 2011; pp. 86–89.
[28]  Carrara, S.; Ghoreishizadeh, S.; Olivo, J.; Taurino, I.; Baj-Rossi, C.; Cavallini, A.; Op de Beeck, M.; Dehollain, C.; Burleson, W.; Moussy, F.G.; et al. Fully integrated biochip platforms for advanced healthcare. Sensors 2012, 12, 11013–11060.
[29]  Aubert, H. RFID technology for human implant devices. Comptes Rendus Phys. 2011, 12, 675–683, doi:10.1016/j.crhy.2011.06.004.
[30]  Denisov, A.; Yeatman, E. Stepwise microactuators powered by ultrasonic transfer. Procedia Eng. 2011, 25, 685–688, doi:10.1016/j.proeng.2011.12.169.
[31]  Bergmann, G.; Graichen, F.; Dymke, J.; Rohlmann, A.; Duda, G.N.; Damm, P. High-tech hip implant for wireless temperature measurements in vivo. PLoS One 2012, 7, doi:10.1371/journal.pone.0043489.
[32]  Theogarajan, L. Strategies for restoring vision to the blind: Current and emerging technologies. Neurosci. Lett. 2012, 519, 129–133, doi:10.1016/j.neulet.2012.02.001.
[33]  Kelly, S.K.; Shire, D.B.; Jinghua, C.; Doyle, P.; Gingerich, M.D.; Cogan, S.F.; Drohan, W.A.; Behan, S.; Theogarajan, L.; Wyatt, J.L.; et al. A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans. Biomed. Eng. 2011, 58, 3197–3205.
[34]  Koo, J.H.; Seo, J.; Lee, T. Nanomaterials on flexible substrates to explore innovative functions: From energy harvesting to bio-integrated electronics. Thin Solid Films 2012, 524, 1–19.
[35]  Farra, R.; Sheppard, N.F.; McCabe, L.; Neer, R.M.; Anderson, J.M.; Santini, J.T.; Cima, M.J.; Langer, R. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 2012, 4, 122–122ra21, doi:10.1126/scitranslmed.3003276.
[36]  Chadwick, P.E. Regulations and standards for wireless applications in eHealth. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 2007, 6171–6174.
[37]  Costa, P.D.; Rodrigues, P.P.; Reis, A.H.; Costa-Pereira, A. A review on remote monitoring technology applied to implantable electronic cardiovascular devices. Telemed. e-Health 2010, 16, 1042–1050, doi:10.1089/tmj.2010.0082.
[38]  Nkosi, M.T.; Mekuria, F.; Gejibo, S.H. Challenges in Mobile Bio-Sensor Based mHealth Development. In Proceedings of the 13th IEEE International Conference on e-Health Networking Applications and Services, ColumbiaMO, USA, June, June, 2011; 2011; pp. 21–27.
[39]  Mancini, F.; Mughal, K.A.; Gejibo, S.H.; Klungsoyr, J. Adding Security to Mobile Data Collection. In Proceedings of the 13th IEEE International Conference on e-Health Networking Applications and Services, Columbia, Mo, USA, June 2011; pp. 86–89.
[40]  Bhunia, S.; Young, D.J. Introduction to special issue on implantable electronics. J. Emerg. Technol. Comput. Syst. 2012, 8, 1–2, doi:10.1145/2180878.2180879.
[41]  Opie, N.L.; Burkitt, A.N.; Meffin, H.; Grayden, D.B. Heating of the eye by a retinal prosthesis: modeling, cadaver and in vivo study. Biomed. Eng., IEEE Trans. 2012, 59, 339–345, doi:10.1109/TBME.2011.2171961.
[42]  Rapoport, B.I.; Turicchia, L.; Wattanapanitch, W.; Davidson, T.J.; Sarpeshkar, R. Efficient universal computing architectures for decoding neural activity. PLoS One 2012, 7, e42492.
[43]  Bazaka, K.; Jacob, M.V.; Crawford, R.J.; Ivanova, E.P. Plasma assisted surface modification of organic biopolymers. Acta Biomater. 2011, 7, 2015–2028, doi:10.1016/j.actbio.2010.12.024.
[44]  Bazaka, K.; Crawford, R.J.; Nazarenko, E.L.; Ivanova, E.P. Bacterial Extracellular Polysaccharides. In Bacterial Adhesion; Linke, D., Goldman, A., Eds.; Springer: AZ Dordrecht, The Netherlands, 2011; Volume 715, pp. 213–226.
[45]  Bazaka, K.; Crawford, R.J.; Ivanova, E.P. Do bacteria differentiate between degrees of nanoscale surface roughness? Biotechnol. J. 2011, 6, 1103–1114.
[46]  Tao, H.; Hwang, S.; Liu, M.; Panilaitis, B.; Brenckle, M.A.; Kaplan, D.L.; Averitt, R.D.; Rogers, J.A.; Omenetto, F.G. Fully Implantable and Resorbable Metamaterials. In Proceedings of the 2012 Conference on Lasers and Electro-Optics, San Jose, CA, USA, May 2012; pp. 1–2.
[47]  Kim, D.-H.; Kim, Y.-S.; Amsden, J.; Panilaitis, B.; Kaplan, D.L.; Omenetto, F.G.; Zakin, M.R.; Rogers, J.A. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett. 2009, 95, 133701.
[48]  Guerci, B.; Bourgeois, C.; Bresler, L.; Scherrer, M.L.; B?hme, P. Gastric electrical stimulation for the treatment of diabetic gastroparesis. Diabetes Metab. 2012, 38, 393–402, doi:10.1016/j.diabet.2012.05.001.
[49]  Occhetta, E.; Bortnik, M.; Marino, P. Usefulness of hemodynamic sensors for physiologic cardiac pacing in heart failure patients. Cardiol. Res. Pract. 2011, 2011, 1–8.
[50]  Stanslaski, S.; Afshar, P.; Peng, C.; Giftakis, J.; Stypulkowski, P.; Carlson, D.; Linde, D.; Ullestad, D.; Avestruz, A.; Denison, T. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 410–421, doi:10.1109/TNSRE.2012.2183617.
[51]  De Haas, R.; Struikmans, R.; van der Plasse, G.; van Kerkhof, L.; Brakkee, J.H.; Kas, M.J.H.; Westenberg, H.G.M. Wireless implantable micro-stimulation device for high frequency bilateral deep brain stimulation in freely moving mice. J. Neurosci. Methods 2012, 209, 113–119, doi:10.1016/j.jneumeth.2012.05.028.
[52]  Fedele, S.; Wolff, A.; Strietzel, F.; Lopez, R.M.; Porter, S.R.; Konttinen, Y.T. Neuroelectrostimulation in treatment of hyposalivation and xerostomia in Sj?gren’s syndrome: A salivary pacemaker. J. Rheumatol. 2008, 35, 1489–1494.
[53]  Vanhoestenberghe, A. Implantable electronic devices technology challenges for long-term human implantation. Sens. Rev. 2009, 29, 345–348, doi:10.1108/02602280910986593.
[54]  Merrill, D.R.; Bikson, M.; Jefferys, J.G.R. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J. Neurosci. Methods 2005, 141, 171–198, doi:10.1016/j.jneumeth.2004.10.020.
[55]  Paralikar, K.; Cong, P.; Yizhar, O.; Fenno, L.E.; Santa, W.; Nielsen, C.; Dinsmoor, D.; Hocken, B.; Munns, G.O.; Giftakis, J.; et al. An implantable optical stimulation delivery system for actuating an excitable biosubstrate. IEEE J. Solid-State Circuits 2011, 46, 321–332, doi:10.1109/JSSC.2010.2074110.
[56]  Merrill, D.R. The Electrode—Materials and Configurations. In Essential Neuromodulation, 1st; Jeffrey, E.A., Jay, L.S., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 107–152.
[57]  Cowan, D.B.; McGowan, F.X. A paradigm shift in cardiac pacing therapy? Circulation 2006, 114, 986–988, doi:10.1161/CIRCULATIONAHA.106.644799.
[58]  Rezai, A.R.; Phillips, M.; Baker, K.B.; Sharan, A.D.; Nyenhuis, J.; Tkach, J.; Henderson, J.; Shellock, F.G. Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Investig. Radiol. 2004, 39, 300–303, doi:10.1097/01.rli.0000124940.02340.ab.
[59]  Shinbane, J.; Colletti, P.; Shellock, F. Magnetic resonance imaging in patients with cardiac pacemakers: Era of “MR Conditional” designs. J. Cardiovasc. Magn. Reson. 2011, 13, doi:10.1186/1532-429X-13-63.
[60]  Gupte, A.A.; Shrivastava, D.; Spaniol, M.A.; Abosch, A. MRI-related heating near deep brain stimulation electrodes: More data are needed. Stereotact. Funct. Neurosurg. 2011, 89, 131–140, doi:10.1159/000324906.
[61]  Henderson, J.M.; Tkach, J.; Phillips, M.; Baker, K.; Shellock, F.G.; Rezai, A.R. Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson’s disease: Case report. Neurosurgery 2005, 57, E1063, doi:10.1227/01.NEU.0000180810.16964.3E.
[62]  Hannan, M.A.; Abbas, S.M.; Samad, S.A.; Hussain, A. Modulation techniques for biomedical implanted devices and their challenges. Sensors 2011, 12, 297–319, doi:10.3390/s120100297.
[63]  Trohman, R.G.; Kim, M.H.; Pinski, S.L. Cardiac pacing: The state of the art. Lancet 2004, 364, 1701–1719.
[64]  Butson, C.R.; McIntyre, C.C. Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimul. 2008, 1, 7–15, doi:10.1016/j.brs.2007.08.004.
[65]  Choi, C.T.M.; Lee, Y.-T. Modeling Deep Brain Stimulation Based on Current Steering Scheme. In Proceedings of the 14th Biennial IEEE Conference on Electromagnetic Field Computation, Chicago, IL, USA, May 2010; p. 1.
[66]  Falcone, J.D.; Bhatti, P.T. Current steering and current focusing with a high-density intracochlear electrode array. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2011, 1049–1052.
[67]  Han, M.; Manoonkitiwongsa, P.S.; Wang, C.X.; McCreery, D.B. In vivo validation of custom-designed silicon-based microelectrode arrays for long-term neural recording and stimulation. IEEE Trans. Biomed. Eng. 2012, 59, 346–354, doi:10.1109/TBME.2011.2172440.
[68]  Stanslaski, S.; Cong, P.; Carlson, D.; Santa, W.; Jensen, R.; Molnar, G.; Marks, W.J.; Shafquat, A.; Denison, T. An implantable Bi-directional brain-machine interface system for chronic neuroprosthesis research. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 2009, 5494–5497.
[69]  Filali, M.; Hutchison, W.; Palter, V.; Lozano, A.; Dostrovsky, J. Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp. Brain Res. 2004, 156, 274–281, doi:10.1007/s00221-003-1784-y.
[70]  Pinski, S.L.; Trohman, R.G. Permanent pacing via implantable defibrillators. Pacing Clin. Electrophysiol. 2000, 23, 1667–1682.
[71]  Prasad, A.; Sanchez, J.C. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. J. Neural Eng. 2012, 9, doi:10.1088/1741-2560/9/2/026028.
[72]  Polikov, V.S.; Tresco, P.A.; Reichert, W.M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 2005, 148, 1–18, doi:10.1016/j.jneumeth.2005.08.015.
[73]  Prasad, A.; Xue, Q.S.; Sankar, V.; Nishida, T.; Shaw, G.; Streit, W.J.; Sanchez, J.C. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J. Neural Eng. 2012, 9, doi:10.1088/1741-2560/9/5/056015.
[74]  Liu, X.; McCreery, D.B.; Carter, R.R.; Bullara, L.A.; Yuen, T.G.H.; Agnew, W.F. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans. Rehabil. Eng. 1999, 7, 315–326, doi:10.1109/86.788468.
[75]  Freire, M.A.M.; Morya, E.; Faber, J.; Santos, J.R.; Guimaraes, J.S.; Lemos, N.A.M.; Sameshima, K.; Pereira, A.; Ribeiro, S.; Nicolelis, M.A.L. Comprehensive analysis of tissue preservation and recording quality from chronic multielectrode implants. PLoS One 2011, 6, doi:10.1371/journal.pone.0027554.
[76]  Harris, J.P.; Capadona, J.R.; Miller, R.H.; Healy, B.C.; Shanmuganathan, K.; Rowan, S.J.; Weder, C.; Tyler, D.J. Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies. J. Neural Eng. 2011, 8, doi:10.1088/1741-2560/8/6/066011.
[77]  Potter, K.A.; Buck, A.C.; Self, W.K.; Capadona, J.R. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. J. Neural Eng. 2012, 9, doi:10.1088/1741-2560/9/4/046020.
[78]  Hashemi, P.; Walsh, P.L.; Guillot, T.S.; Gras-Najjar, J.; Takmakov, P.; Crews, F.T.; Wightman, R.M. Chronically implanted, nafion-coated Ag/AgCl reference electrodes for neurochemical applications. ACS Chem. Neurosci. 2011, 2, 658–666, doi:10.1021/cn2000684.
[79]  Turner, J.N.; Shain, W.; Szarowski, D.H.; Andersen, M.; Martins, S.; Isaacson, M.; Craighead, H. Cerebral astrocyte response to micromachined silicon implants. Exp. Neurol. 1999, 156, 33–49, doi:10.1006/exnr.1998.6983.
[80]  Roitbak, T.; Syková, E. Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 1999, 28, 40–48, doi:10.1002/(SICI)1098-1136(199910)28:1<40::AID-GLIA5>3.0.CO;2-6.
[81]  Bovolenta, P.; Fernaud-Espinosa, I. Nervous system proteoglycans as modulators of neurite outgrowth. Prog. Neurobiol. 2000, 61, 113–132, doi:10.1016/S0301-0082(99)00044-1.
[82]  Zamecnik, J.; Homola, A.; Cicanic, M.; Kuncova, K.; Marusic, P.; Krsek, P.; Sykova, E.; Vargova, L. The extracellular matrix and diffusion barriers in focal cortical dysplasias. Eur. J. Neurosci. 2012, 36, 2017–2024, doi:10.1111/j.1460-9568.2012.08107.x.
[83]  Marinskis, G.; van Erven, L.; Bongiorni, M.G.; Lip, G.Y.H.; Pison, L.; Blomstr?m-Lundqvist, C. Practices of cardiac implantable electronic device follow-up: results of the European Heart Rhythm Association survey. Europace 2012, 14, 423–425, doi:10.1093/europace/eus020.
[84]  Sticherling, C.; Kühne, M.; Schaer, B.; Altmann, D.; Osswald, S. Remote monitoring of cardiovascular implantable electronic devices: prerequisite or luxury? Swiss Med. WKLY. 2009, 139, 596–601.
[85]  De Cock, C.; Elders, J.; van Hemel, N.; van den Broek, K.; van Erven, L.; de Mol, B.; Talmon, J.; Theuns, D.; de Voogt, W. Remote monitoring and follow-up of cardiovascular implantable electronic devices in the Netherlands. Neth. Heart J. 2012, 20, 53–65, doi:10.1007/s12471-011-0239-5.
[86]  Schuettler, M.; Stieglitz, T. Intelligent telemetric implants. Biomed. Tech. 2012, 57, doi:10.1515/bmt-2012-4255.
[87]  Yakovlev, A.; Sanghoek, K.; Poon, A. Implantable biomedical devices: Wireless powering and communication. Commun. Mag., IEEE 2012, 50, 152–159.
[88]  Gosselin, B. Recent advances in neural recording microsystems. Sensors 2011, 11, 4572–4597, doi:10.3390/s110504572.
[89]  Jow, U.-M.; Ghovanloo, M. Modeling and optimization of printed spiral coils in air, saline, and muscle tissue environments. Biomed. Circuits Sys., IEEE Trans. 2009, 3, 339–347, doi:10.1109/TBCAS.2009.2025366.
[90]  RamRakhyani, A.K.; Mirabbasi, S.; Chiao, M. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. Biomed. Circuits Sys., IEEE Trans. 2011, 5, 48–63, doi:10.1109/TBCAS.2010.2072782.
[91]  Pethig, R. Dielectric properties of body tissues. Clin. Phys. Physiol. Meas. 1987, 8, doi:10.1088/0143-0815/8/4A/002.
[92]  Parametric Model for the Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz-100 GHz. Available online: http://niremf.ifac.cnr.it/tissprop/ (accessed on 18 December 2012).
[93]  Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, doi:10.1088/0031-9155/41/11/002.
[94]  Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, doi:10.1088/0031-9155/41/11/001.
[95]  Sontag, S.K.; Marshall, N.; Locklin, J. Formation of conjugated polymer brushes by surface-initiated catalyst-transfer polycondensation. Chem. Commun. 2009, 3354–3356.
[96]  Mercier, P.P.; Lysaght, A.C.; Bandyopadhyay, S.; Chandrakasan, A.P.; Stankovic, K.M. Energy extraction from the biologic battery in the inner ear. Nat. Biotech. 2012, 30, 1240–1243, doi:10.1038/nbt.2394.
[97]  Cinquin, P.; Gondran, C.; Giroud, F.; Mazabrard, S.; Pellissier, A.; Boucher, F.; Alcaraz, J.-P.; Gorgy, K.; Lenouvel, F.; Mathé, S.; et al. Aglucose biofuel cell implanted in rats. PLoS One 2010, 5, e10476.
[98]  Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 2008, 182, 1–17, doi:10.1016/j.jpowsour.2008.03.031.
[99]  Zebda, A.; Gondran, C.; Le Goff, A.; Holzinger, M.; Cinquin, P.; Cosnier, S. Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat. Commun. 2011, 2, doi:10.1038/ncomms1365.
[100]  Carrara, S.; Torre, M.D.; Cavallini, A.; de Venuto, D.; de Micheli, G. Multiplexing pH and Temperature in a Molecular Biosensor. In Proceedings of the IEEE Biomedical Circuits and Systems Conference, Paphos, Cyprus, November 2010; pp. 146–149.
[101]  Ferreira, F.; Iost, R.M.; Martins, M.V.A.; Almeida, M.C.; Crespilho, F.N. Intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip 2012, doi:10.1039/C2LC41007A.
[102]  Olivo, J.; Carrara, S.; de Micheli, G. Biofuel cells and inductive powering as energy harvesting techniques for implantable sensors. Sci. Adv. Mater. 2011, 3, 420–425, doi:10.1166/sam.2011.1175.
[103]  Ayazian, S.; Akhavan, V.A.; Soenen, E.; Hassibi, A. A photovoltaic-driven and energy-autonomous CMOS implantable sensor. IEEE Trans. Biomed. Circuits Sys. 2012, 6, 336–343, doi:10.1109/TBCAS.2011.2179030.
[104]  Loeb, G.E.; Richmond, F.J.R.; Singh, J.; Peck, R.A.; Tan, W.; Zou, Q.; Sachs, N. RF-powered BION for stimulation and sensing. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2004, 2004, 4182–4185.
[105]  Kohno, R.; Hamaguchi, K.; Li, H.-B.; Takizawa, K. R&D and Standardization of Body Area Network (BAN) for Medical Healthcare. In Proceedins of the 2008 IEEE International Conference on Ultra-Wideband, Hannover, Germany, September, 2008; pp. 5–8.
[106]  Heidbüchel, H.; Lioen, P.; Foulon, S.; Huybrechts, W.; Ector, J.; Willems, R.; Ector, H. Potential role of remote monitoring for scheduled and unscheduled evaluations of patients with an implantable defibrillator. Europace 2008, 10, 351–357, doi:10.1093/europace/eun010.
[107]  Hughes, M.L.; Goehring, J.L.; Baudhuin, J.L.; Diaz, G.R.; Sanford, T.; Harpster, R.; Valente, D.L. Use of telehealth for research and clinical measures in cochlear implant recipients: A validation study. J. Speech Lang. Hear. Res. 2012, 55, 1112–1127, doi:10.1044/1092-4388(2011/11-0237).
[108]  Müller, A.; Helms, T.M.; Wildau, H.-J.; Schwab, J.O.; Zugck, C. Remote monitoring in patients with pacemakers and implantable cardioverter-defibrillators: New perspectives for complex therapeutic management. In Modern Pacemakers—Present and Future; Das, M.K., Ed.; InTech: Rijeka, Croatia, 2011.
[109]  Ellery, S.; Pakrashi, T.; Paul, V.; Sack, S. Predicting mortality and rehospitalization in heart failure patients with Home Monitoring—The Home CARE pilot study. Clin. Res. Cardiol. 2006, 95, ii29–ii35, doi:10.1007/s00392-006-1306-6.
[110]  Reynolds, D.W.; Jayaprasad, N.; Francis, J. Remote monitoring of implantable cardioverter defibrillator. Indian Pacing Electrophysiol. J. 2006, 6, 186–188.
[111]  Felisberto, F.; Costa, N.; Fdez-Riverola, F.; Pereira, A. Unobstructive body area networks (BAN) for efficient movement monitoring. Sensors 2012, 12, 12473–12488, doi:10.3390/s120912473.
[112]  Redondi, A.; Tagliasacchi, M.; Cesana, M.; Borsani, L.; Tarrío, P.; Salice, F. LAURA LocAlization and Ubiquitous Monitoring of pAtients for Health Care Support. In Proceedings of the 21st IEEE International Symposium on PersonalIndoor and Mobile Radio Communications, Istanbul, Turkey, September 2010; pp. 218–222.
[113]  Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Sys., Man, Cybern. C 2010, 40, 1–12, doi:10.1109/TSMCC.2009.2032660.
[114]  Patel, S.; Lorincz, K.; Hughes, R.; Huggins, N.; Growdon, J.; Standaert, D.; Akay, M.; Dy, J.; Welsh, M.; Bonato, P. Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 864–873, doi:10.1109/TITB.2009.2033471.
[115]  Rigas, G.; Tzallas, A.T.; Tsipouras, M.G.; Bougia, P.; Tripoliti, E.E.; Baga, D.; Fotiadis, D.I.; Tsouli, S.G.; Konitsiotis, S. Assessment of tremor activity in the Parkinson’s disease using a set of wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 478–487, doi:10.1109/TITB.2011.2182616.
[116]  Li, M.; Lou, W.; Ren, K. Data security and privacy in wireless body area networks. Wirel. Commun., IEEE 2010, 17, 51–58, doi:10.1109/MWC.2010.5416350.
[117]  Ko, J.; Lu, C.; Srivastava, M.B.; Stankovic, J.A.; Terzis, A.; Welsh, M. Wireless sensor networks for healthcare. Proc. IEEE 2010, 98, 1947–1960, doi:10.1109/JPROC.2010.2065210.
[118]  Gao, T.; Pesto, C.; Selavo, L.; Chen, Y.; Ko, J.G.; Lim, J.H.; Terzis, A.; Watt, A.; Jeng, J.; Chen, B.-R.; et al. Wireless Medical Sensor Networks in Emergency Response: Implementation and Pilot Results. In Proceedings of the 2008 IEEE Conference on Technologies for Homeland Security, Boston, UK, May 2008; pp. 187–192.
[119]  Chen, B.-R.; Peterson, G.; Mainland, G.; Welsh, M. LiveNet: Using passive monitoring to reconstruct sensor network dynamics. In Distributed Computing in Sensor Systems; Nikoletseas, S., Chlebus, B., Eds.; Springer: Heidelberg, Germany, 2008; Volume 5067, pp. 79–98.
[120]  Fraboulet, A.; Chelius, G.; Fleury, E. Worldsens: Development and Prototyping Tools for Application Specific Wireless Sensors Networks. In Proceedings of the 6th International Symposium on Information Processing in Sensor Networks, New York, NY, USA, April 2007; pp. 176–185.
[121]  Landsiedel, O.; Alizai, H.; Wehrle, K. When Timing Matters: Enabling Time Accurate and Scalable Simulation of Sensor Network Applications. In Proceedings of the 7th ACM International Conference on Information Processing in Sensor Networks, St. Louis, MO, USA April 2008; pp. 344–355.
[122]  Kim, K.T.; Son, M.H. SAEP: Secure and Accurate and Energy-Efficient Time Synchronization in Wireless Sensor Networks. In Proceedings of the 2009 Eighth International Symposium on Parallel and Distributed Computing, Lisbon, Portugal, 30 June–4 July 2009; pp. 117–120.
[123]  Belsis, P.; Skourlas, C.; Gritzalis, S. Secure electronic healthcare records management in wireless environments. J. Inf. Technol. Res. 2011, 4, 1–17.
[124]  Maisel, W.H.; Kohno, T. Improving the security and privacy of implantable medical devices. N. Engl. J.Med. 2010, 362, 1164–1166, doi:10.1056/NEJMp1000745.
[125]  Srinivasan, V.; Stankovic, J.; Whitehouse, K. Protecting your daily in-home activity information from a wireless snooping attack. In Proceedings of the 10th International Conference on Ubiquitous Computing; ACM: Seoul, Korea, 2008; pp. 202–211.
[126]  Balouchestani, M.; Raahemifar, K.; Krishnan, S. Increasing the Reliability of Wireless Sensor Network with a New Testing Approach Based on Compressed Sensing Theory. In Proceedings of the 2011 Eighth International Conference on Wireless and Optical Communications Networks, Paris, France, May 2011; pp. 1–4.
[127]  Mahalanobis, A.; Muise, R. Object specific image reconstruction using a compressive sensing architecture for application in surveillance systems. IEEE Trans. Aerosp. Electron. Sys. 2009, 45, 1167–1180, doi:10.1109/TAES.2009.5259191.
[128]  ?apkun, S.; Bodmer, D. On the Security and Privacy Risks in Cochlear Implants; ETH, Department of Computer Science: Zurich, Switzerland, 2010.
[129]  Tadeusiewicz, R.; Rotter, P.; Gasson, M.N. Restoring Function: Application Exemplars of Medical ICT Implants. In Human ICT Implants: Technical, Legal and Ethical Considerations; Gasson, M.N., Kosta, E., Eds.; T.M.C. Asser Press: The Hague, The Netherlands, 2012; Volume 23, pp. 41–51.
[130]  Ramos, A.; Rodríguez, C.; Martinez-Beneyto, P.; Perez, D.; Gault, A.; Falcon, J.C.; Boyle, P. Use of telemedicine in the remote programming of cochlear implants. Acta Oto-Laryngol. 2009, 129, 533–540, doi:10.1080/00016480802294369.
[131]  Rotter, P.; Gasson, M.N. Implantable Medical Devices: Privacy and Security Concerns. In Human ICT Implants: Technical, Legal and Ethical Considerations; Gasson, M.N., Kosta, E., Eds.; T.M.C. Asser Press: The Hague, The Netherlands, 2012; Volume 23, pp. 63–66.
[132]  Rotter, P.; Daskala, B.; Compa?ó, R. Passive Human ICT Implants: Risks and Possible Solutions. In Human ICT Implants: Technical, Legal and Ethical Considerations; Gasson, M.N., Kosta, E., Eds.; T.M.C. Asser Press: The Hague, The Netherlands, 2012; Volume 23, pp. 55–62.
[133]  Becker, E.; Xu, Y.; Ledford, S.; Makedon, F. A wireless sensor network architecture and its application in an assistive environment. In Proceedings of the 1st International Conference on PErvasive Technologies Related to Assistive Environments; ACM: Athens, Greece, 2008; pp. 1–7.
[134]  Halperin, D.; Heydt-Benjamin, T.S.; Ransford, B.; Clark, S.S.; Defend, B.; Morgan, W.; Fu, K.; Kohno, T.; Maisel, W.H. Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses. In Proceedings of the 2008 IEEE Symposium on Security and Privacy, Oakland, CA, USA, May 2008; pp. 129–142.
[135]  Nagpal, A.; Baddour, L.M.; Sohail, M.R. Microbiology and pathogenesis of cardiovascular implantable electronic device infections. Circ.: Arrhythmia Electrophysiol. 2012, 5, 433–441, doi:10.1161/CIRCEP.111.962753.
[136]  Subbiahdoss, G.; Kuijer, R.; Grijpma, D.W.; van der Mei, H.C.; Busscher, H.J. Microbial biofilm growth vs. tissue integration: “The race for the surface” experimentally studied. Acta Biomater. 2009, 5, 1399–1404, doi:10.1016/j.actbio.2008.12.011.
[137]  Busscher, H.J.; Ploeg, R.J.; van der Mei, H.C. Snapshot: Biofilms and biomaterials: mechanisms of medical device related infections. Biomaterials 2009, 30, 4247–4248, doi:10.1016/j.biomaterials.2009.05.070.
[138]  Dababneh, A.S.; Sohail, M.R. Cardiovascular implantable electronic device infection: A stepwise approach to diagnosis and management. Clevel. Clin. J.Med. 2011, 78, 529–537, doi:10.3949/ccjm.78a.10169.
[139]  Bloom, H.; Heeke, B.; Leon, A.; Mera, F.; Delurgio, D.; Beshai, J.; Langberg, J. Renal insufficiency and the risk of infection from pacemaker or defibrillator surgery. Pacing Clin. Electrophysiol. 2006, 29, 142–145, doi:10.1111/j.1540-8159.2006.00307.x.
[140]  Le, K.Y.; Sohail, M.R.; Friedman, P.A.; Uslan, D.Z.; Cha, S.S.; Hayes, D.L.; Wilson, W.R.; Steckelberg, J.M.; Baddour, L.M. Mayo Cardiovascular Infections Study Group. Clinical predictors of cardiovascular implantable electronic device-related infective endocarditis. Pacing Clin. Electrophysiol. 2011, 34, 450–459, doi:10.1111/j.1540-8159.2010.02991.x.
[141]  Hanssen, A.D. Managing the infected knee: As good as it gets. J. Arthroplast. 2002, 17, 98–101, doi:10.1054/arth.2002.32458.
[142]  Montanaro, L.; Campoccia, D.; Arciola, C.R. Advancements in molecular epidemiology of implant infections and future perspectives. Biomaterials 2007, 28, 5155–5168, doi:10.1016/j.biomaterials.2007.08.003.
[143]  Bazaka, K.; Jacob, M.V.; Truong, V.K.; Wang, F.; Pushpamali, W.A.; Wang, J.; Ellis, A.; Berndt, C.C.; Crawford, R.J.; Ivanova, E.P. Effect of plasma-enhanced chemical vapour deposition on the retention of antibacterial activity of terpinen-4-ol. Biomacromolecules 2010, 11, 2016–2026, doi:10.1021/bm100369n.
[144]  Bazaka, K.; Jacob, M.; Truong, V.K.; Crawford, R.J.; Ivanova, E.P. The effect of polyterpenol thin film surfaces on bacterial viability and adhesion. Polymers 2011, 3, 388–404, doi:10.3390/polym3010388.
[145]  Chua, J.D.; Wilkoff, B.L.; Lee, I.; Juratli, N.; Longworth, D.L.; Gordon, S.M. Diagnosis and management of infections involving implantable electrophysiologic cardiac devices. Ann. Intern. Med. 2000, 133, 604–608.
[146]  Rohacek, M.; Weisser, M.; Kobza, R.; Schoenenberger, A.W.; Pfyffer, G.E.; Frei, R.; Erne, P.; Trampuz, A. Bacterial colonization and infection of electrophysiological cardiac devices detected with sonication and swab culture. Circulation 2010, 121, 1691–1697, doi:10.1161/CIRCULATIONAHA.109.906461.
[147]  Deresinski, S. Bacterial colonization of implantable cardiovascular electronic devices. Clin. Infect. Dis. 2010, 51, iii–iv.
[148]  Deharo, J.-C.; Quatre, A.; Mancini, J.; Khairy, P.; Le Dolley, Y.; Casalta, J.-P.; Peyrouse, E.; Prév?t, S.; Thuny, F.; Collart, F.; et al. Long-term outcomes following infection of cardiac implantable electronic devices: a prospective matched cohort study. Heart 2012, 98, 724–731.
[149]  Gandhi, T.; Crawford, T.; Riddell Iv, J. Cardiovascular implantable electronic device associated infections. Infect. Dis. Clin. N. Am. 2012, 26, 57–76, doi:10.1016/j.idc.2011.09.001.
[150]  Sohail, M.R.; Uslan, D.Z.; Khan, A.H.; Friedman, P.A.; Hayes, D.L.; Wilson, W.R.; Steckelberg, J.M.; Stoner, S.; Baddour, L.M. Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J. Am. Coll. Cardiol. 2007, 49, 1851–1859, doi:10.1016/j.jacc.2007.01.072.
[151]  Pavia, S.; Wilkoff, B. The management of surgical complications of pacemaker and implantable cardioverter-defibrillators. Curr. Opin. Cardio. 2001, 16, 66–71, doi:10.1097/00001573-200101000-00010.
[152]  Jordan, J.R.; Bloom, H. Prevention of bacterial infections in patients with CIED: Old traditions meet new technology. Innov. Card. Rhythm Manag. 2010, 1, 63–71.
[153]  Vallés, G.; García-Cimbrelo, E.; Vilaboa, N. Osteolysis and Aseptic Loosening: Cellular Events Near the Implant. In Tribology in Total Hip Arthroplasty, Edition Number?; Knahr, K., Ed.; Springer: Heidelberg, Germany, 2011; pp. 181–191.
[154]  Sundfeldt, M.; V Carlsson, L.; B Johansson, C.; Thomsen, P.; Gretzer, C. Aseptic loosening, not only a question of wear: A review of different theories. Acta Orthop. 2006, 77, 177–197, doi:10.1080/17453670610045902.
[155]  Ma, T.; Goodman, S.B. Biological Effects of Wear Debris from Joint Arthroplasties. In Comprehensive Biomaterials, 1st; Ducheyne, D., Healy, K., Eds.; Elsevier: Oxford, UK, 2011; pp. 79–87.
[156]  Malek, I.A.; King, A.; Sharma, H.; Malek, S.; Lyons, K.; Jones, S.; John, A. The sensitivity, specificity and predictive values of raised plasma metal ion levels in the diagnosis of adverse reaction to metal debris in symptomatic patients with a metal-on-metal arthroplasty of the hip. J. Bone Jt. Surg., Br. 2012, 94, 1045–1050.
[157]  Granchi, D.; Cenni, E.; Giunti, A.; Baldini, N. Metal hypersensitivity testing in patients undergoing joint replacement. J. Bone Jt. Surg., Br. 2012, 94, 1126–1134, doi:10.1302/0301-620X.94B8.28135.
[158]  Greenfield, E.M.; Tatro, J.M.; Smith, M.V.; Schnaser, E.A.; Wu, D. PI3Kγ deletion reduces variability in the in vivo osteolytic response induced by orthopaedic wear particles. J. Orthop. Res. 2011, 29, 1649–1653, doi:10.1002/jor.21440.
[159]  Tuan, R.S.; Lee, F.Y.-I.; Konttinen, Y.T.; Wilkinson, J.M.; Smith, R.L. What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? J. Am. Acad. Orthop. Surg. 2008, 16, S42–S48.
[160]  Huber, M.; Reinisch, G.; Trettenhahn, G.; Zweymüller, K.; Lintner, F. Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total hip replacements with metal bearing surfaces. Acta Biomater. 2009, 5, 172–180, doi:10.1016/j.actbio.2008.07.032.
[161]  Vallés, G.; González-Melendi, P.; González-Carrasco, J.L.; Salda?a, L.; Sánchez-Sabaté, E.; Munuera, L.; Vilaboa, N. Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials 2006, 27, 5199–5211, doi:10.1016/j.biomaterials.2006.05.045.
[162]  Hatton, A.; Nevelos, J.E.; Nevelos, A.A.; Banks, R.E.; Fisher, J.; Ingham, E. Alumina-alumina artificial hip joints. Part I: A histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials 2002, 23, 3429–3440, doi:10.1016/S0142-9612(02)00047-9.
[163]  Kamath, A.F.; Lee, G.C.; Garino, J.P. Ceramic Prostheses: Clinical Results Worldwide. In Comprehensive Biomaterials, 1st; Ducheyne, D., Healy, K., Eds.; Elsevier: Oxford, UK, 2011; pp. 51–63.
[164]  Goodman, S.B.; Ma, T.; Chiu, R.; Ramachandran, R.; Lane Smith, R. Effects of orthopaedic wear particles on osteoprogenitor cells. Biomaterials 2006, 27, 6096–6101, doi:10.1016/j.biomaterials.2006.08.023.
[165]  Qian, K.; de Beeck, M.O.; Bryce, G.; Malachowski, K.; van Hoof, C. Novel Miniaturized Packaging for Implantable Electronic Devices. In Proceedings of the 2012 IEEE International Interconnect Technology Conference, San Jose, CA, USA, June 2012; pp. 1–3.
[166]  Hwang, S.-W.; Tao, H.; Kim, D.-H.; Cheng, H.; Song, J.-K.; Rill, E.; Brenckle, M.A.; Panilaitis, B.; Won, S.M.; Kim, Y.-S.; et al. A physically transient form of silicon electronics. Science 2012, 337, 1640–1644.
[167]  Pierson, D.; Edick, J.; Tauscher, A.; Pokorney, E.; Bowen, P.; Gelbaugh, J.; Stinson, J.; Getty, H.; Lee, C.H.; Drelich, J.; et al. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J. Biomed. Mater. Res. Part B 2012, 100B, 58–67, doi:10.1002/jbm.b.31922.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133