全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibiotics  2013 

Photobactericides—A Local Option against Multi-Drug Resistant Bacteria

DOI: 10.3390/antibiotics2020182

Keywords: photobactericide, conventional resistance mechanisms, methylene blue

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of light-activated bactericidal agents—photobactericides—is suggested in local infection in order to conserve conventional antibacterials for more systemic disease. Local administration of a photobactericide such as methylene blue coupled with locally-targeted red light illumination ensures the production of non-specific reactive oxygen species and thus a rapid and localised antibacterial response, regardless of the conventional resistance status. To this end, the response of photobactericides to conventional resistance mechanisms, and their potential use in infection, is discussed.

References

[1]  Fleming, A. Nobel Lectures, Physiology or Medicine 1942–1962; Elsevier Publishing Company: Amsterdam, The Netherlands, 1964; pp. 83–93.
[2]  Forbes, G.B. Infection with penicillin-resistant staphylococci in hospital and general practice. Br. Med. J. 1949, 2, 569–571, doi:10.1136/bmj.2.4627.569.
[3]  Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends Mol. Med. 2012, 18, 263–272, doi:10.1016/j.molmed.2012.03.003.
[4]  Andersen, R.; Loebel, N.; Hammond, D.; Wilson, M. Treatment of periodontal disease by photodisinfection compared to scaling and root planning. J. Clin. Dent. 2007, 18, 1–5.
[5]  Brown, S.B.; Brown, E.A.; Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004, 5, 497–508, doi:10.1016/S1470-2045(04)01529-3.
[6]  Merchat, M.; Bertolini, G.; Giacomin, P.; Villanueva, A.; Jori, G. Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J. Photochem. Photobiol. B 1996, 32, 153–157, doi:10.1016/1011-1344(95)07147-4.
[7]  Thakor, N.S.; Wilson, K.S.; Scott, P.G.; Taylor, D.E. An improved procedure for expression and purification of ribosomal protectionnprotein Tet(O) for high-resolution structural studies. Prot. Exp. Pur. 2007, 55, 388–394, doi:10.1016/j.pep.2007.04.016.
[8]  Witte, W.; Cuny, C.; Klare, I.; Nübel, U.; Strommenger, B.; Werner, G. Emergence and spread of antibiotic-resistant Gram-positive bacterial pathogens. Int. J. Med. Microbiol. 2008, 298, 365–377.
[9]  Wainwright, M.; Phoenix, D.A.; Gaskell, M.; Marshall, B. Photobactericidal activity of methylene blue derivatives against vancomycin-resistant Enterococcus spp. J. Antimicrob. Chemother. 1999, 44, 823–825, doi:10.1093/jac/44.6.823.
[10]  Kashef, N.; Abadi, G.R.S.; Djavid, G.E. Phototoxicity of phenothiazinium dyes against methicillin-resistant Staphylococcus aureus and multi-drug resistant Escherichia coli. Photodiag. Photodyn. Ther. 2012, 9, 11–15, doi:10.1016/j.pdpdt.2011.11.004.
[11]  Kim, S.Y.; Kwon, O.J.; Park, J.W. Inactivation of catalase and superoxide dismutase by singlet oxygen derived from photoactivated dye. Biochimie 2001, 83, 437–444, doi:10.1016/S0300-9084(01)01258-5.
[12]  Nakonieczna, J.; Michta, E.; Rybicka, M.; Grinholc, M.; Gwizdek-Wi?niewska, A.; Bielawski, K.P. Superoxide dismutase is upregulated in Staphylococcus aureus following protoporphyrin-mediated photodynamic inactivation and does not directly influence the response to photodynamic treatment. BMC Microbiol. 2010, 10, e323, doi:10.1186/1471-2180-10-323.
[13]  Minnock, A.; Vernon, D.I.; Schofield, J.; Griffiths, J.; Parish, J.H.; Brown, S.B. Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob. Agents Chemother. 2000, 44, 522–527, doi:10.1128/AAC.44.3.522-527.2000.
[14]  Spesia, M.B.; Caminos, D.A.; Pons, P.; Durantini, E.N. Mechanistic insight of the photodynamic inactivation of Escherichia coli by a tetracationic zinc(II) phthalocyanine derivative. Photodiag. Photodyn. Ther. 2009, 6, 52–61, doi:10.1016/j.pdpdt.2009.01.003.
[15]  Tegos, G.P.; Anbe, M.; Yang, C.; Demidova, T.N.; Satti, M.; Mroz, P.; Janjua, S.; Gad, F.; Hamblin, M.R. Protease-stable polycationic photosensitizer conjugates between polyethyleneimineand chlorin (e6) for broad-spectrum antimicrobial photoinactivation. Antimicrob. Agents Chemother. 2006, 50, 1402–1410, doi:10.1128/AAC.50.4.1402-1410.2006.
[16]  Sherrill, J.; Michielsen, S.; Stojiljkovic, I. Grafting of light-activated antimicrobial materials to nylon films. J. Polym. Sci. A Polym. Chem. 2003, 41, 41–47, doi:10.1002/pola.10556.
[17]  Bonnett, R.; Buckley, D.G.; Burrow, T.; Galia, A.B.B.; Saville, B.; Songca, S.P. Photobactericidal materials based on porphyrins and phthalocyanines. J. Mater. Chem. 1993, 3, 323–324, doi:10.1039/jm9930300323.
[18]  Tegos, G.P.; Hamblin, M.R. Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob. Agents Chemother. 2006, 50, 196–203, doi:10.1128/AAC.50.1.196-203.2006.
[19]  Tegos, G.P.; Masago, K.; Aziz, F.; Higginbotham, A.; Stermitz, F.R.; Hamblin, M.R. Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrob. Agents Chemother. 2008, 52, 3202–3209.
[20]  Giuliani, F.; Martinelli, M.; Cocchi, A.; Arbia, D.; Fantetti, L.; Roncucci, G. In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrob. Agents Chemother. 2010, 54, 637–642, doi:10.1128/AAC.00603-09.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133