This paper presents the effectiveness of bioelectrical signals such as the electrocardiogram (ECG) and the electroencephalogram (EEG) for biometric applications. Studies show that the impulses of cardiac rhythm and electrical activity of the brain recorded in ECG and EEG, respectively; have unique features among individuals, therefore they can be suggested to be used as biometrics for identity verification. The favourable characteristics to use the ECG or EEG signals as biometric include universality, measurability, uniqueness and robustness. In addition, they have the inherent feature of vitality that signifies the life signs offering a strong protection against spoof attacks. Unlike conventional biometrics, the ECG or EEG is highly confidential and secure to an individual which is difficult to be forged. We present a review of methods used for the ECG and EEG as biometrics for individual authentication and compare their performance on the datasets and test conditions they have used. We illustrate the challenges involved in using the ECG or EEG as biometric primarily due to the presence of drastic acquisition variations and the lack of standardization of signal features. In order to determine the large-scale performance, individuality of the ECG or EEG is another challenge that remains to be addressed. 1. Introduction 1.1. Bioelectrical Signals Bioelectrical signals are very low amplitude and low frequency electrical signals that can be measured from biological beings, for example, humans. Bioelectrical signals are generated from the complex self-regulatory system and can be measured through changes in electrical potential across a cell or an organ. The bioelectrical signals of our interest are in particular, the electrocardiogram (ECG) and the electroencephalogram (EEG). An ECG measures the electrical manifestation of the ionic potential of the heart while an EEG measures the electrical activity evoked along the scalp of the brain. The ECG and the EEG are recorded using standard equipments in the noninvasive fashion. The researchers of multiple disciplines have shown their greater interest in analyzing the ECG and the EEG to understand the high level features an individual is producing. However, the interdisciplinary analysis of bioelectrical signals not only helps in assessing the individuals state of health but also it suggests that the bioelectrical signals can be used as the candidate of biometrics for identity verification. 1.2. Characteristics of Bioelectrical Signals as Biometrics Biometrics aim to facilitate an identity management system for
References
[1]
A. K. Jain, A. Ross, and S. Prabhakar, “An Introduction to Biometric Recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 4–20, 2004.
[2]
S. A. Israel, J. M. Irvine, A. Cheng, M. D. Wiederhold, and B. K. Wiederhold, “ECG to identify individuals,” Pattern Recognition, vol. 38, no. 1, pp. 133–142, 2005.
[3]
J. M. Irvine, S. A. Israel, W. Todd Scruggs, and W. J. Worek, “eigenPulse: robust human identification from cardiovascular function,” Pattern Recognition, vol. 41, no. 11, pp. 3427–3435, 2008.
[4]
S. A. Israel and J. M. Irvine, “A sequential procedure for individual identity verification using ECG,” Eurasip Journal on Advances in Signal Processing, vol. 2009, Article ID 243215, 2009.
[5]
L. Biel, O. Pettersson, L. Philipson, and P. Wide, “ECG analysis: a new approach in human identification,” IEEE Transactions on Instrumentation and Measurement, vol. 50, no. 3, pp. 808–812, 2001.
[6]
T. W. Shen, W. J. Tompkins, and Y.H. Hu, “One-Lead ECG for Identity Verification,” in Proceedings of the 2nd Joint Engineering in Medicine and Biology. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, pp. 62–63, 2002.
[7]
Y. Wang, F. Agrafioti, D. Hatzinakos, and K.N. Plataniotis, “Analysis of Human Electrocardiogram for Biometric Recognition,” EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 148658, 11 pages, 2008.
[8]
Y. N. Singh and P. Gupta, “ECG to individual identification,” in Proceedings of the IEEE 2nd International Conference on Biometrics: Theory, Applications and Systems (BTAS'08), October 2008.
[9]
Y. N. Singh and P. Gupta, “Biometrics method for human identification using electrocardiogram,” Lecture Notes in Computer Science, vol. 5558, pp. 1270–1279, 2009.
[10]
Y. N. Singh and P. Gupta, “Correlation-based classification of heartbeats for individual identification,” Soft Computing, vol. 15, no. 3, pp. 449–460, 2011.
[11]
Y. N. Singh and P. Gupta, “Quantitative evaluation of normalization techniques of matching scores in multimodal biometric systems,” Lecture Notes in Computer Science, vol. 4642, pp. 574–583, 2007.
[12]
M. Poulos, M. Rangoussi, and A. Evangelou, “Person Identification based on Parametric Processing on the EEG,” in Proceedings of the 6th International Conference on Electronics, Circuits and Systems, vol. 1, pp. 283–286, 1999.
[13]
R. B. Paranjape, J. Mahovsky, L. Benedicenti, and Z. Koles, “The electroencephalogram as a biometric,” in Proceedings of the Canadian Conference on Electrical and Computer Engineering, pp. 1363–1366, May 2001.
[14]
R. Palaniappan and D. P. Mandic, “Biometrics from brain electrical activity: a machine learning approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 738–742, 2007.
[15]
R. Palaniappan and P. Raveendran, “Individual identification technique using visual evoked potential signals,” Electronics Letters, vol. 38, no. 25, pp. 1634–1635, 2002.
[16]
S. Marcel and J. D. Millan, “Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 743–752, 2007.
[17]
S. Sun, “Multitask learning for EEG-based biometrics,” in Proceedings of the 19th International Conference on Pattern Recognition, (ICPR '08), December 2008.
[18]
International Human Genome Sequencing Consortium, “Initial sequencing and analysis of the human genome,” Nature, vol. 409, pp. 860–921, 2001.
[19]
E. Szathmáry, “The origin of the genetic code: amino acids as cofactors in an RNA world,” Trends in Genetics, vol. 15, no. 6, pp. 223–229, 1999.
[20]
B. P. Simon and C. Eswaran, “An ECG classifier designed using modified decision based neural networks,” Computers and Biomedical Research, vol. 30, no. 4, pp. 257–272, 1997.
[21]
L. A. Geddes and R. A. Roeder, “The first electronic electrocardiograph,” Cardiovascular Engineering, vol. 2, no. 2, pp. 73–79, 2002.
[22]
P. Zarychta, F. E. Smith, S. T. King et al., “Body surface potential mapping for detection of myocardial infarct sites,” in Proceedings of the Computers in Cardiology (CAR '07), pp. 181–184, October 2007.
[23]
J. R. Hampton, The ECG Made Easy, Churchill Livingstone, London, UK, 5th edition, 2001.
[24]
F. Sufi and I. Khalil, “An automated patient authentication system for remote telecardiology,” in Proceedings of the International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP '08), pp. 279–284, December 2008.
[25]
Centers for Medicare & Medicaid Services, US Department of Health and Medical Services, http://www.cms.hhs.gov/hipaageninfo/.
[26]
Y. N. Singh and S. K. Singh, “Evaluation of electrocardiogram for biometric authentication,” Journal of Information Security, vol. 3, no. 1, pp. 39–48, 2012.
[27]
Y. N. Singh, S. K. Singh, and P. Gupta, “Fusion of electrocardiogram with unobtrusive biometrics: an efficient individual authentication system,” Pattern Recognition Letters. In press.
[28]
R. Hoekema, G. J. H. Uijen, and A. Van Oosterom, “Geometrical aspects of the interindividual variability of multilead ECG recordings,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 5, pp. 551–559, 2001.
[29]
Physionet, “Physiobank archives,” Massachusetts Institute of Technology Cambridge, http://www.physionet.org/physiobank/database/#ecg.
[30]
J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Transactions on Biomedical Engineering, vol. 32, no. 3, pp. 230–236, 1985.
[31]
Y. N. Singh and P. Gupta, “A robust delineation approach of electrocardiographic P waves,” in Proceedings of the IEEE Symposium on Industrial Electronics and Applications (ISIEA '09), pp. 846–849, October 2009.
[32]
Y. N. Singh and P. Gupta, “An efficient and robust technique of T wave delineation in electrocardiogram,” in Proceedings of the 2nd International Conference on Bio-Inspired Systems and Signal Processing (BIOSIGNALS '09), pp. 146–154, prt, January 2009.
[33]
“NIST: biometric scores set,” National Institute of Standards and Technology, October 2004, http://www.itl.nist.gov/iad/894.03/biometricscores/.
[34]
M. W. Russell, I. Law, P. Sholinsky, and R. R. Fabsitz, “Heritability of ECG measurements in adult male twins,” Journal of Electrocardiology, vol. 30, pp. 64–68, 1998.
[35]
E. R. Kandel, J. H. Schwartz, and T. M. Jessel, Principles of Neural Science, McGraw-Hill, New York, NY, USA, 4th edition, 2000.
[36]
E. Neidermeyer, “Historical Aspects,” in Electroencephalography: Basic Principals, Clinical Applications, and Related Fields, E. Neidermeyer and F. Lopes da Silva, Eds., pp. 1–15, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 5th edition, 2005.
[37]
J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clinical Neurophysiology, vol. 113, no. 6, pp. 767–791, 2002.
[38]
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley, India, 2nd edition, 2009.
[39]
H. Gaudreau, J. Carrier, and J. Montplaisir, “Age-related modifications of NREM sleep EEG: from childhood to middle age,” Journal of Sleep Research, vol. 10, no. 3, pp. 165–172, 2001.
[40]
L. David, “Research with twins: the concept of emergencies,” Phychophysiology, vol. 19, pp. 361–367, 1982.
[41]
H. H. Stassen, G. Bomben, and P. Propping, “Genetic aspects of the EEG: an investigation into the within-pair similarity of monozygotic and dizygotic twins with a new method of analysis,” Electroencephalography and Clinical Neurophysiology, vol. 66, no. 6, pp. 489–501, 1987.