%0 Journal Article %T Bioelectrical Signals as Emerging Biometrics: Issues and Challenges %A Yogendra Narain Singh %A Sanjay Kumar Singh %A Amit Kumar Ray %J ISRN Signal Processing %D 2012 %R 10.5402/2012/712032 %X This paper presents the effectiveness of bioelectrical signals such as the electrocardiogram (ECG) and the electroencephalogram (EEG) for biometric applications. Studies show that the impulses of cardiac rhythm and electrical activity of the brain recorded in ECG and EEG, respectively; have unique features among individuals, therefore they can be suggested to be used as biometrics for identity verification. The favourable characteristics to use the ECG or EEG signals as biometric include universality, measurability, uniqueness and robustness. In addition, they have the inherent feature of vitality that signifies the life signs offering a strong protection against spoof attacks. Unlike conventional biometrics, the ECG or EEG is highly confidential and secure to an individual which is difficult to be forged. We present a review of methods used for the ECG and EEG as biometrics for individual authentication and compare their performance on the datasets and test conditions they have used. We illustrate the challenges involved in using the ECG or EEG as biometric primarily due to the presence of drastic acquisition variations and the lack of standardization of signal features. In order to determine the large-scale performance, individuality of the ECG or EEG is another challenge that remains to be addressed. 1. Introduction 1.1. Bioelectrical Signals Bioelectrical signals are very low amplitude and low frequency electrical signals that can be measured from biological beings, for example, humans. Bioelectrical signals are generated from the complex self-regulatory system and can be measured through changes in electrical potential across a cell or an organ. The bioelectrical signals of our interest are in particular, the electrocardiogram (ECG) and the electroencephalogram (EEG). An ECG measures the electrical manifestation of the ionic potential of the heart while an EEG measures the electrical activity evoked along the scalp of the brain. The ECG and the EEG are recorded using standard equipments in the noninvasive fashion. The researchers of multiple disciplines have shown their greater interest in analyzing the ECG and the EEG to understand the high level features an individual is producing. However, the interdisciplinary analysis of bioelectrical signals not only helps in assessing the individuals state of health but also it suggests that the bioelectrical signals can be used as the candidate of biometrics for identity verification. 1.2. Characteristics of Bioelectrical Signals as Biometrics Biometrics aim to facilitate an identity management system for %U http://www.hindawi.com/journals/isrn.signal.processing/2012/712032/