Magnetoencephalography is a noninvasive, fast, and patient friendly technique for recording brain activity. It is increasingly available and is regarded as one of the most modern imaging tools available to radiologists. The dominant clinical use of this technology currently centers on two, partly overlapping areas, namely, localizing the regions from which epileptic seizures originate, and identifying regions of normal brain function in patients preparing to undergo brain surgery. As a consequence, many radiologists may not yet be familiar with this technique. This review provides an introduction to magnetoencephalography, discusses relevant analytical techniques, and presents recent developments in established and emerging clinical applications such as pervasive developmental disorders. Although the role of magnetoencephalography in diagnosis, prognosis, and patient treatment is still limited, it is argued that this technology is exquisitely capable of contributing indispensable information about brain dynamics not easily obtained with other modalities. This, it is believed, will make this technology an important clinical tool for a wide range of disorders in the future. 1. Introduction Magnetoencephalography (MEG) is a noninvasive technique for recording brain activity. MEG was first introduced to the scientific community in 1972 [1], and it has undergone substantial technological advances ever since. Modern multichannel, whole-head systems provide reliable, fast, and patient friendly scanning that is increasingly being used for clinically oriented research into a wealth of mental disorders and abnormal conditions, such as adult and pediatric epilepsy [2–6], autism [7, 8], schizophrenia [9], Williams syndrome [10], Landau-Kleffner syndrome [11], Alzheimer’s disease [12, 13], depression [14], attention deficit hyperactivity disorder [15, 16], and dyslexia [17]. Moreover, MEG has been used to study neuronal change and reorganization following stroke [18], head trauma [19], and drug administration [20]. MEG research centers now exist in many countries, with perhaps Japan, USA, Germany, UK, and Finland leading in terms of total installations. MEG has been approved for clinical evaluation by FDA (Food and Drug Administration) and Medicare in the USA, where many insurance companies presently are covering MEG scans in patients with epilepsy, intracranial neoplasia, and vascular malformations [6]. Typically, MEG scans have to be coordinated on a case-by-case basis requiring efforts on the part of the MEG center, the patient’s doctors, and the patient. Centers
References
[1]
D. Cohen, “Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer,” Science, vol. 175, no. 4022, pp. 664–666, 1972.
[2]
E. Pataraia, C. Baumgartner, G. Lindinger, and L. Deecke, “Magnetoencephalography in presurgical epilepsy evaluation,” Neurosurgical Review, vol. 25, no. 3, pp. 141–159, 2002.
[3]
R. Paetau, “Magnetoencephalography in pediatric neuroimaging,” Developmental Science, vol. 5, no. 3, pp. 361–370, 2002.
[4]
J. P. M?kel?, N. Forss, J. J??skel?inen, E. Kirveskari, A. Korvenoja, and R. Paetau, “Magnetoencephalography in neurosurgery,” Neurosurgery, vol. 59, no. 3, pp. 493–510, 2006.
[5]
C. R. McDonald, “The use of neuroimaging to study behavior in patients with epilepsy,” Epilepsy and Behavior, vol. 12, no. 4, pp. 600–611, 2008.
[6]
E. S. Schwartz, J. C. Edgar, W. C. Gaetz, and T. P. L. Roberts, “Magnetoencephalography,” Pediatric Radiology, vol. 40, no. 1, pp. 50–58, 2010.
[7]
A. J. Bailey, S. Braeutigam, V. Jousm?ki, and S. J. Swithenby, “Abnormal activation of face processing systems at early and intermediate latency in individuals with autism spectrum disorder: a magnetoencephalographic study,” European Journal of Neuroscience, vol. 21, no. 9, pp. 2575–2585, 2005.
[8]
A. Kylli?inen, S. Braeutigam, J. K. Hietanen, S. J. Swithenby, and A. J. Bailey, “Face- and gaze-sensitive neural responses in children with autism: a magnetoencephalographic study,” European Journal of Neuroscience, vol. 24, no. 9, pp. 2679–2690, 2006.
[9]
D. Dima, S. Frangou, L. Burge, S. Braeutigam, and A. C. James, “Abnormal intrinsic and extrinsic connectivity within the magnetic mismatch negativity brain network in schizophrenia: a preliminary study,” Schizophrenia Research, vol. 135, no. 1–3, pp. 23–27, 2012.
[10]
M. Nakamura, S. Watanabe, M. Inagaki, et al., “Electrophysiological study of face inversion effects in Williams syndrome,” Brain and Development, vol. 35, no. 4, pp. 323–330, 2013.
[11]
R. Paetau, “Magnetoencephalography in landau-kleffner syndrome,” Epilepsia, vol. 50, supplement 7, pp. 51–54, 2009.
[12]
W. de Haan, W. M. van der Flier, T. Koene, L. L. Smits, P. Scheltens, and C. J. Stam, “Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer's disease,” NeuroImage, vol. 59, no. 4, pp. 3085–3093, 2012.
[13]
C. Cheng, P. Wang, W. Hsu, and Y. Lin, “Inadequate inhibition of redundant auditory inputs in Alzheimer's disease: an MEG study,” Biological Psychology, vol. 89, no. 2, pp. 365–373, 2012.
[14]
Y. Takei, S. Kumano, S. Hattori et al., “Preattentive dysfunction in major depression: a magnetoencephalography study using auditory mismatch negativity,” Psychophysiology, vol. 46, no. 1, pp. 52–61, 2009.
[15]
C. Dockstader, W. Gaetz, D. Cheyne, and R. Tannock, “Abnormal neural reactivity to unpredictable sensory events in attention-deficit/hyperactivity disorder,” Biological Psychiatry, vol. 66, no. 4, pp. 376–383, 2009.
[16]
P. Helenius, M. Laasonen, L. Hokkanen, R. Paetau, and M. Niemivirta, “Impaired engagement of the ventral attentional pathway in ADHD,” Neuropsychologia, vol. 49, no. 7, pp. 1889–1896, 2011.
[17]
R. Salmelin, “Clinical neurophysiology of language: the MEG approach,” Clinical Neurophysiology, vol. 118, no. 2, pp. 237–254, 2007.
[18]
K. Laaksonen, L. Helle, L. Parkkonen, et al., “Alterations in spontaneous brain oscillations during stroke recovery,” PLoS ONE, vol. 8, no. 4, Article ID e61146, 2013.
[19]
J. D. Lewine, J. T. Davis, E. D. Bigler et al., “Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI,” Journal of Head Trauma Rehabilitation, vol. 22, no. 3, pp. 141–155, 2007.
[20]
J. D. Franzen and T. W. Wilson, “Amphetamines modulate prefrontal gamma oscillations during attention processing,” Neuroreport, vol. 23, no. 12, pp. 731–735, 2012.
[21]
M. H?m?l?inen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Reviews of Modern Physics, vol. 65, no. 2, pp. 413–497, 1993.
[22]
R. Hari and N. Forss, “Magnetoencephalography in the study of human somatosensory cortical processing,” Philosophical Transactions of the Royal Society B, vol. 354, no. 1387, pp. 1145–1154, 1999.
[23]
J. Vrba, “Multichannel squid biomagnetic systems,” Applications of Superconductivity, vol. 365, pp. 61–138, 1999.
[24]
J. Vrba and S. E. Robinson, “Signal processing in magnetoencephalography,” Methods, vol. 25, no. 2, pp. 249–271, 2001.
[25]
J. Vrba, “Magnetoencephalography: the art of finding a needle in a haystack,” Physica C, vol. 368, no. 1–4, pp. 1–9, 2002.
[26]
R. Plonsey, “The nature of sources of bioelectric and biomagnetic fields,” Biophysical Journal, vol. 39, no. 3, pp. 309–312, 1982.
[27]
J. Wu and Y. C. Okada, “Genesis of MEG signals. II. Effects of manipulating voltage- and Ca(2+)-activated K(+) channels on the magnetic fields produced by the CA3 slice of guinea pig,” Recent Advances in Human Neurophysiology, vol. 1162, pp. 38–44, 1998.
[28]
J. Wu and Y. C. Okada, “Genesis of MEG signals. I. Effects of ligand-gated channels on the magnetic fields produced by the CA3 slice of guinea pig,” Recent Advances in Human Neurophysiology, vol. 1162, pp. 32–37, 1998.
[29]
P. C. Hansen, M. L. Kringelbach, and R. Salmelin, MEG: An Introduction to Methods, Oxford University Press, New York, NY, USA, 2010.
[30]
J. Gross, S. Baillet, G. R. Barnes, et al., “Good practice for conducting and reporting MEG research,” Neuroimage, vol. 65, pp. 349–363, 2013.
[31]
K. E. Misulis and T. Fakhoury, Spehlmann's Evoked Potential Primer, Butterworth-Heinemann, Boston, Mass, USA, 3rd edition, 2001.
[32]
E. Basar, “A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology,” International Journal of Psychophysiology, vol. 86, no. 1, pp. 1–24, 2012.
[33]
C. Tallon-Baudry and O. Bertrand, “Oscillatory gamma activity in humans and its role in object representation,” Trends in Cognitive Sciences, vol. 3, no. 4, pp. 151–162, 1999.
[34]
O. Bertrand and C. Tallon-Baudry, “Oscillatory gamma activity in humans: a possible role for object representation,” International Journal of Psychophysiology, vol. 38, no. 3, pp. 211–223, 2000.
[35]
P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology,” Neuron, vol. 52, no. 1, pp. 155–168, 2006.
[36]
P. J. Uhlhaas and W. Singer, “The development of neural synchrony and large-scale cortical networks during adolescence: relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis,” Schizophrenia Bulletin, vol. 37, no. 3, pp. 514–523, 2011.
[37]
A. K. Engel, P. Fries, and W. Singer, “Dynamic predictions: oscillations and synchrony in top-down processing,” Nature Reviews Neuroscience, vol. 2, no. 10, pp. 704–716, 2001.
[38]
M. Bartos, I. Vida, and P. Jonas, “Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks,” Nature Reviews Neuroscience, vol. 8, no. 1, pp. 45–56, 2007.
[39]
G. Pfurtscheller, “Functional brain imaging based on ERD/ERS,” Vision Research, vol. 41, no. 10-11, pp. 1257–1260, 2001.
[40]
J. D. Jackson, Classical Electrodynamics, John Wiley, New York, NY, USA, 1962.
[41]
J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem,” Physics in Medicine and Biology, vol. 32, no. 1, pp. 11–22, 1987.
[42]
T. S. Tian, “Functional data analysis in brain imaging studies,” Frontiers in Psychology, vol. 1, pp. 1–11, 2010.
[43]
T. E. Katila, “Round table. On the current multipole presentation of the primary current distributions—Rome, September 15, 1982,” Il Nuovo Cimento D, vol. 2, no. 2, pp. 660–664, 1983.
[44]
S. Baillet, J. C. Mosher, and R. M. Leahy, “Electromagnetic brain mapping,” IEEE Signal Processing Magazine, vol. 18, no. 6, pp. 14–30, 2001.
[45]
R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, “Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain,” International Journal of Psychophysiology, vol. 18, no. 1, pp. 49–65, 1994.
[46]
K. Uutela, M. H?m?l?inen, and E. Somersalo, “Visualization of magnetoencephalographic data using minimum current estimates,” NeuroImage, vol. 10, no. 2, pp. 173–180, 1999.
[47]
L. Stenbacka, S. Vanni, K. Uutela, and R. Hari, “Comparison of minimum current estimate and dipole modeling in the analysis of simulated activity in the human visual cortices,” NeuroImage, vol. 16, no. 4, pp. 936–943, 2002.
[48]
S. Baillet, J. C. Mosher, and R. M. Leahy, “Electromagnetic brain imaging using brainstorm,” in Proceedings of the 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano, vol. 1, 2, pp. 652–655, April 2004.
[49]
F. Lin, T. Witzel, S. P. Ahlfors, S. M. Stufflebeam, J. W. Belliveau, and M. S. H?m?l?inen, “Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates,” NeuroImage, vol. 31, no. 1, pp. 160–171, 2006.
[50]
A. Gramfort, M. Kowalski, and M. H?m?l?inen, “Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods,” Physics in Medicine and Biology, vol. 57, no. 7, pp. 1937–1961, 2012.
[51]
B. D. Van Veen, W. Van Drongelen, M. Yuchtman, and A. Suzuki, “Localization of brain electrical activity via linearly constrained minimum variance spatial filtering,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 9, pp. 867–880, 1997.
[52]
J. Gross, J. Kujala, M. H?m?l?inen, L. Timmermann, A. Schnitzler, and R. Salmelin, “Dynamic imaging of coherent sources: studying neural interactions in the human brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 694–699, 2001.
[53]
A. Hashizume, K. Iida, H. Shirozu et al., “Gradient magnetic-field topography for dynamic changes of epileptic discharges,” Brain Research, vol. 1144, no. 1, pp. 175–179, 2007.
[54]
J. Nenonen, “Magnetic Source Imaging,” 2007.
[55]
R. Enatsu, N. Mikuni, K. Usui et al., “Usefulness of MEG magnetometer for spike detection in patients with mesial temporal epileptic focus,” NeuroImage, vol. 41, no. 4, pp. 1206–1219, 2008.
[56]
H. R. Mohseni, P. P. Smith, C. E. Parsons, et al., “MEG can map short and long-term changes in brain activity following deep brain stimulation for chronic pain,” Plos ONE, vol. 7, no. 6, Article ID e37993, 2012.
[57]
R. Hari, R. Salmelin, S. O. Tissari, M. Kajola, and V. Virsu, “Visual stability during eyeblinks,” Nature, vol. 367, no. 6459, pp. 121–122, 1994.
[58]
T. Bardouille, T. W. Picton, and B. Ross, “Correlates of eye blinking as determined by synthetic aperture magnetometry,” Clinical Neurophysiology, vol. 117, no. 5, pp. 952–958, 2006.
[59]
A. Despopoulos and S. Silbernagel, Color Atlas of Physiology, Thieme Medical Publishers, New York, NY, USA, 1991.
[60]
V. Jousm?ki and R. Hari, “Cardiac artifacts in magnetoencephalogram,” Journal of Clinical Neurophysiology, vol. 13, no. 2, pp. 172–176, 1996.
[61]
P. Berg and B. M. Scherg, “A multiple source approach to the correction of eye artifacts,” Electroencephalography and Clinical Neurophysiology, vol. 90, no. 3, pp. 229–241, 1994.
[62]
C. D. Meyer, Matrix Analysis and Applied Linear Algebra Book and Solutions Manual, SIAM, Philadelphia, Pa, USA, 2001.
[63]
J. Cardoso, “Blind signal separation: statistical principles,” Proceedings of the IEEE, vol. 86, no. 10, pp. 2009–2025, 1998.
[64]
C. J. James and C. W. Hesse, “Independent component analysis for biomedical signals,” Physiological Measurement, vol. 26, no. 1, pp. R15–R39, 2005.
[65]
F. Rong and J. L. Contreras-Vidal, “Magnetoencephalographic artifact identification and automatic removal based on independent component analysis and categorization approaches,” Journal of Neuroscience Methods, vol. 157, no. 2, pp. 337–354, 2006.
[66]
Y. Okada, J. Jung, and T. Kobayashi, “An automatic identification and removal method for eye-blink artifacts in event-related magnetoencephalographic measurements,” Physiological Measurement, vol. 28, no. 12, pp. 1523–1532, 2007.
[67]
D. Mantini, R. Franciotti, G. L. Romani, and V. Pizzella, “Improving MEG source localizations: an automated method for complete artifact removal based on independent component analysis,” NeuroImage, vol. 40, no. 1, pp. 160–173, 2008.
[68]
J. Dammers, M. Schiek, F. Boers, et al., “Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 10, pp. 2353–2362, 2008.
[69]
M. A. Klados, C. Papadelis, C. Braun, and P. D. Bamidis, “REG-ICA: a hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts,” Biomedical Signal Processing and Control, vol. 6, no. 3, pp. 291–300, 2011.
[70]
J. Escudero, R. Hornero, D. Abásolo, and A. Fernández, “Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation,” Annals of Biomedical Engineering, vol. 39, no. 8, pp. 2274–2286, 2011.
[71]
S. Taulu and M. Kajola, “Presentation of electromagnetic multichannel data: the signal space separation method,” Journal of Applied Physics, vol. 97, no. 12, Article ID 124905, 2005.
[72]
S. Taulu, J. Simola, and M. Kajola, “Applications of the signal space separation method,” IEEE Transactions on Signal Processing, vol. 53, no. 9, pp. 3359–3372, 2005.
[73]
S. Taulu and J. Simola, “Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements,” Physics in Medicine and Biology, vol. 51, no. 7, pp. 1759–1768, 2006.
[74]
S. Taulu, M. Kajola, and J. Simola, “Suppression of interference and artifacts by the signal space separation method,” Brain Topography, vol. 16, no. 4, pp. 269–275, 2004.
[75]
S. Taulu, J. Simola, and M. Kajola, “Clinical applications of the signal space separation method,” Frontiers in Human Brain Topography, vol. 1270, pp. 32–37, 2004.
[76]
M. Medvedovsky, S. Taulu, R. Bikmullina, A. Ahonen, and R. Paetau, “Fine tuning the correlation limit of spatio-temporal signal space separation for magnetoencephalography,” Journal of Neuroscience Methods, vol. 177, no. 1, pp. 203–211, 2009.
[77]
M. Medvedovsky, S. Taulu, R. Bikmullina, and R. Paetau, “Artifact and head movement compensation in MEG,” Neurology, Neurophysiology, and Neuroscience, p. 4, 2007.
[78]
Y. Kakisaka, Z. I. Wang, J. C. Mosher et al., “Clinical evidence for the utility of movement compensation algorithm in magnetoencephalography: successful localization during focal seizure,” Epilepsy Research, vol. 101, no. 1-2, pp. 191–196, 2012.
[79]
J. Nenonen, J. Nurminen, D. Kicic, et al., “Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography,” Clinical Neurophysiology, vol. 123, no. 11, pp. 2180–2191, 2012.
[80]
E. Carrette, X. De Tiège, M. O. De Beeck et al., “Magnetoencephalography in epilepsy patients carrying a vagus nerve stimulator,” Epilepsy Research, vol. 93, no. 1, pp. 44–52, 2011.
[81]
V. Litvak, A. Eusebio, A. Jha, et al., “Movement-related changes in local and long-range synchronization in Parkinson's disease revealed by simultaneous magnetoencephalography and intracranial recordings,” Journal of Neuroscience, vol. 32, no. 31, pp. 10541–10553, 2012.
[82]
The Merck Manual of Medical Information, Pocket Book, New York, NY, USA, 2000.
[83]
S. Karceski, “How to identify the signs and symptoms of partial seizures,” Practical Neurology, pp. 12–13, 2008.
[84]
R. C. Knowlton and J. Shih, “Magnetoencephalography in epilepsy,” Epilepsia, vol. 45, no. 4, pp. 61–71, 2004.
[85]
H. Stefan, S. Rampp, and R. C. Knowlton, “Magnetoencephalography adds to the surgical evaluation process,” Epilepsy and Behavior, vol. 20, no. 2, pp. 172–177, 2011.
[86]
J. Burch, A. Marson, F. Beyer, et al., “Dilemmas in the interpretation of diagnostic accuracy studies on presurgical workup for epilepsy surgery,” Epilepsia, vol. 53, no. 8, pp. 1294–1302, 2012.
[87]
D. F. Rose, P. D. Smith, and S. Sato, “Magnetoencephalography and epilepsy research,” Science, vol. 238, no. 4825, pp. 329–335, 1987.
[88]
D. F. Rose, S. Sato, E. Ducla-Soares, and C. V. Kufta, “Magnetoencephalographic localization of subdural dipoles in a patient with temporal lobe epilepsy,” Epilepsia, vol. 32, no. 5, pp. 635–641, 1991.
[89]
C. Baumgartner, E. Pataraia, G. Lindinger, and L. Deecke, “Neuromagnetic recordings in temporal lobe epilepsy,” Journal of Clinical Neurophysiology, vol. 17, no. 2, pp. 177–189, 2000.
[90]
R. Bouet, J. Jung, C. Delpuech et al., “Towards source volume estimation of interictal spikes in focal epilepsy using magnetoencephalography,” NeuroImage, vol. 59, no. 4, pp. 3955–3966, 2012.
[91]
D. Madhavan, E. Heinrichs-Graham, and T. W. Wilson, “Whole-brain functional connectivity increases with extended duration of focal epileptiform activity,” Neuroscience Letters, vol. 542, pp. 26–29, 2013.
[92]
H. Stefan, S. Schneider, H. Feistel et al., “Ictal and interictal activity in partial epilepsy recorded with multichannel magnetoelectroencephalography: correlation of electroencephalography/electrocorticography, magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography findings,” Epilepsia, vol. 33, no. 5, pp. 874–887, 1992.
[93]
A. Ray and S. M. Bowyer, “Clinical applications of magnetoencephalography in epilepsy,” Annals of Indian Academy of Neurology, vol. 13, no. 1, pp. 14–22, 2010.
[94]
D. S. Eliashiv, S. M. Elsas, K. Squires, I. Fried, and J. Engel Jr., “Ictal magnetic source imaging as a localizing tool in partial epilepsy,” Neurology, vol. 59, no. 10, pp. 1600–1610, 2002.
[95]
W. W. Sutherling, P. H. Crandall, and J. Engel Jr., “The magnetic field of complex partial seizures agrees with intracranial localizations,” Annals of Neurology, vol. 21, no. 6, pp. 548–558, 1987.
[96]
H. Fujiwara, H. M. Greiner, N. Hemasilpin et al., “Ictal MEG onset source localization compared to intracranial EEG and outcome: improved epilepsy presurgical evaluation in pediatrics,” Epilepsy Research, vol. 99, no. 3, pp. 214–224, 2012.
[97]
M. Medvedovsky, S. Taulu, E. Gaily, et al., “Sensitivity and specificity of seizure-onset zone estimation by ictal magnetoencephalography,” Epilepsia, vol. 53, no. 9, pp. 1649–1657, 2012.
[98]
A. Paulini, M. Fischer, S. Rampp et al., “Lobar localization information in epilepsy patients: MEG—a useful tool in routine presurgical diagnosis,” Epilepsy Research, vol. 76, no. 2-3, pp. 124–130, 2007.
[99]
M. Heers, S. Rampp, H. Stefan et al., “MEG-based identification of the epileptogenic zone in occult peri-insular epilepsy,” Seizure, vol. 21, no. 2, pp. 128–133, 2012.
[100]
M. Iwasaki, E. Pestana, R. C. Burgess, H. O. Lüders, H. Shamoto, and N. Nakasato, “Detection of epileptiform activity by human interpreters: blinded comparison between electroencephalography and magnetoencephalography,” Epilepsia, vol. 46, no. 1, pp. 59–68, 2005.
[101]
S. Knake, E. Halgren, H. Shiraishi et al., “The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients,” Epilepsy Research, vol. 69, no. 1, pp. 80–86, 2006.
[102]
A. Paulini, et al., “Lobar localisation information: comparison of EEG and MEG,” Epilepsia, vol. 47, pp. 105–106, 2006.
[103]
B. Abou-Khalil, “An update on determination of language dominance in screening for epilepsy surgery: the Wada test and newer noninvasive alternatives,” Epilepsia, vol. 48, no. 3, pp. 442–455, 2007.
[104]
S. Baxendale, “The Wada test,” Current Opinion in Neurology, vol. 22, no. 2, pp. 185–189, 2009.
[105]
C. Carlson, “Wada you do for language: fMRI and language lateralization?” Epilepsy Currents, vol. 10, no. 4, pp. 86–88, 2010.
[106]
A. C. Papanicolaou, P. G. Simos, E. M. Castillo et al., “Magnetocephalography: a noninvasive alternative to the Wada procedure,” Journal of Neurosurgery, vol. 100, no. 5, pp. 867–876, 2004.
[107]
R. E. Frye, R. Rezaie, and A. C. Papanicolaou, “Functional neuroimaging of language using magnetoencephalography,” Physics of Life Reviews, vol. 6, no. 1, pp. 1–10, 2009.
[108]
R. C. Doss, W. Zhang, G. L. Risse, and D. L. Dickens, “Lateralizing language with magnetic source imaging: validation based on the Wada test,” Epilepsia, vol. 50, no. 10, pp. 2242–2248, 2009.
[109]
M. Hirata, T. Goto, G. Barnes et al., “Language dominance and mapping based on neuromagnetic oscillatory changes: comparison with invasive procedures: clinical article,” Journal of Neurosurgery, vol. 112, no. 3, pp. 528–538, 2010.
[110]
R. L. Billingsley-Marshall, T. Clear, W. E. Mencl et al., “A comparison of functional MRI and magnetoencephalography for receptive language mapping,” Journal of Neuroscience Methods, vol. 161, no. 2, pp. 306–313, 2007.
[111]
K. Marinkovic, R. P. Dhond, A. M. Dale, M. Glessner, V. Carr, and E. Halgren, “Spatiotemporal dynamics of modality-specific and supramodal word processing,” Neuron, vol. 38, no. 3, pp. 487–497, 2003.
[112]
C. R. McDonald, T. Thesen, D. J. Hagler Jr. et al., “Distributed source modeling of language with magnetoencephalography: application to patients with intractable epilepsy,” Epilepsia, vol. 50, no. 10, pp. 2256–2266, 2009.
[113]
M. Pirmoradi, R. Béland, D. K. Nguyen, B. A. Bacon, and M. Lassonde, “Language tasks used for the presurgical assessment of epileptic patients with MEG,” Epileptic Disorders, vol. 12, no. 2, pp. 97–108, 2010.
[114]
J. Wellmer, B. Weber, H. Urbach, J. Reul, G. Fernandez, and C. E. Elger, “Cerebral lesions can impair fMRI-based language lateralization,” Epilepsia, vol. 50, no. 10, pp. 2213–2224, 2009.
[115]
U. Frith, Autism: Explaining the Enigma, Blackwell, Malden, Mass, USA, 2nd edition, 2003.
[116]
F. R. Volkmar, C. Lord, A. Bailey, R. T. Schultz, and A. Klin, “Autism and pervasive developmental disorders,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 45, no. 1, pp. 135–170, 2004.
[117]
S. Baron-Cohen and M. K. Belmonte, “Autism: a window onto the development of the social and the analytic brain,” Annual Review of Neuroscience, vol. 28, pp. 109–126, 2005.
[118]
E. B. Caronna, J. M. Milunsky, and H. Tager-Flusberg, “Autism spectrum disorders: clinical and research frontiers,” Archives of Disease in Childhood, vol. 93, no. 6, pp. 518–523, 2008.
[119]
Y. Shen, K. A. Dies, I. A. Holm et al., “Clinical genetic testing for patients with autism spectrum disorders,” Pediatrics, vol. 125, no. 4, pp. E727–E735, 2010.
[120]
C. J. Newschaffer, L. A. Croen, J. Daniels et al., “The epidemiology of autism spectrum disorders,” Annual Review of Public Health, vol. 28, pp. 235–258, 2007.
[121]
B. G. R. Neville, “Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders,” Pediatrics, vol. 104, no. 3 I, p. 558, 1999.
[122]
A. M. Kanner, “Commentary: the treatment of seizure disorders and EEG abnormalities in children with autistic spectrum disorders: are we getting ahead of ourselves?” Journal of Autism and Developmental Disorders, vol. 30, no. 5, pp. 491–495, 2000.
[123]
I. Rapin, “Language heterogeneity and regression in the autism spectrum disorders—overlaps with other childhood language regression syndromes,” Clinical Neuroscience Research, vol. 6, no. 3-4, pp. 209–218, 2006.
[124]
B. G. R. Neville, “Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders,” Pediatrics, vol. 104, no. 3 I, pp. 405–418, 1999.
[125]
R. J. Kallen, J. D. Lewine, J. T. Davis et al., “A long letter and an even longer reply about autism magnetoencephalography and electroencephalography,” Pediatrics, vol. 107, no. 5, pp. 1232–1234, 2001.
[126]
J. A. Mu?oz-Yunta, T. Ortiz, M. Palau-Baduell et al., “Magnetoencephalographic pattern of epileptiform activity in children with early-onset autism spectrum disorders,” Clinical Neurophysiology, vol. 119, no. 3, pp. 626–634, 2008.
[127]
M. Sasaki, E. Nakagawa, K. Sugai et al., “Brain perfusion SPECT and EEG findings in children with autism spectrum disorders and medically intractable epilepsy,” Brain and Development, vol. 32, no. 9, pp. 776–782, 2010.
[128]
G. Dawson, S. J. Webb, and J. McPartland, “Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies,” Developmental Neuropsychology, vol. 27, no. 3, pp. 403–424, 2005.
[129]
F. Happé and U. Frith, “The weak coherence account: detail-focused cognitive style in autism spectrum disorders,” Journal of Autism and Developmental Disorders, vol. 36, no. 1, pp. 5–25, 2006.
[130]
K. Elgar, R. Campbell, and D. Skuse, “Are you looking at me? Accuracy in processing line-of-sight in Turner syndrome,” Proceedings of the Royal Society B, vol. 269, no. 1508, pp. 2415–2422, 2002.
[131]
N. Hadjikhani, R. H. Joseph, J. Snyder, and H. Tager-Flusberg, “Abnormal activation of the social brain during face perception in autism,” Human Brain Mapping, vol. 28, no. 5, pp. 441–449, 2007.
[132]
B. Jemel, L. Mottron, and M. Dawson, “Impaired face processing in autism: fact or artifact?” Journal of Autism and Developmental Disorders, vol. 36, no. 1, pp. 91–106, 2006.
[133]
L. Sun, C. Grützner, S. Bolte, et al., “Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: evidence for dysfunctional network activity in frontal-posterior cortices,” Journal of Neuroscience, vol. 32, no. 28, pp. 9563–9573, 2012.
[134]
C. M. Mooney and G. A. Ferguson, “A new closure test,” Canadian Journal of Psychology, vol. 5, no. 3, pp. 129–133, 1951.
[135]
T. P. L. Roberts, G. L. Schmidt, M. Egeth et al., “Electrophysiological signatures: magnetoencephalographic studies of the neural correlates of language impairment in autism spectrum disorders,” International Journal of Psychophysiology, vol. 68, no. 2, pp. 149–160, 2008.
[136]
S. Braeutigam, S. J. Swithenby, and A. J. Bailey, “Contextual integration the unusual way: a magnetoencephalographic study of responses to semantic violation in individuals with autism spectrum disorders,” European Journal of Neuroscience, vol. 27, no. 4, pp. 1026–1036, 2008.
[137]
N. Nishitani, S. Avikainen, and R. Hari, “Abnormal imitation-related cortical activation sequences in Asperger's syndrome,” Annals of Neurology, vol. 55, no. 4, pp. 558–562, 2004.
[138]
F. Happé, “Autism: cognitive deficit or cognitive style?” Trends in Cognitive Sciences, vol. 3, no. 6, pp. 216–222, 1999.