%0 Journal Article %T Magnetoencephalography: Fundamentals and Established and Emerging Clinical Applications in Radiology %A Sven Braeutigam %J ISRN Radiology %D 2013 %R 10.5402/2013/529463 %X Magnetoencephalography is a noninvasive, fast, and patient friendly technique for recording brain activity. It is increasingly available and is regarded as one of the most modern imaging tools available to radiologists. The dominant clinical use of this technology currently centers on two, partly overlapping areas, namely, localizing the regions from which epileptic seizures originate, and identifying regions of normal brain function in patients preparing to undergo brain surgery. As a consequence, many radiologists may not yet be familiar with this technique. This review provides an introduction to magnetoencephalography, discusses relevant analytical techniques, and presents recent developments in established and emerging clinical applications such as pervasive developmental disorders. Although the role of magnetoencephalography in diagnosis, prognosis, and patient treatment is still limited, it is argued that this technology is exquisitely capable of contributing indispensable information about brain dynamics not easily obtained with other modalities. This, it is believed, will make this technology an important clinical tool for a wide range of disorders in the future. 1. Introduction Magnetoencephalography (MEG) is a noninvasive technique for recording brain activity. MEG was first introduced to the scientific community in 1972 [1], and it has undergone substantial technological advances ever since. Modern multichannel, whole-head systems provide reliable, fast, and patient friendly scanning that is increasingly being used for clinically oriented research into a wealth of mental disorders and abnormal conditions, such as adult and pediatric epilepsy [2¨C6], autism [7, 8], schizophrenia [9], Williams syndrome [10], Landau-Kleffner syndrome [11], Alzheimer¡¯s disease [12, 13], depression [14], attention deficit hyperactivity disorder [15, 16], and dyslexia [17]. Moreover, MEG has been used to study neuronal change and reorganization following stroke [18], head trauma [19], and drug administration [20]. MEG research centers now exist in many countries, with perhaps Japan, USA, Germany, UK, and Finland leading in terms of total installations. MEG has been approved for clinical evaluation by FDA (Food and Drug Administration) and Medicare in the USA, where many insurance companies presently are covering MEG scans in patients with epilepsy, intracranial neoplasia, and vascular malformations [6]. Typically, MEG scans have to be coordinated on a case-by-case basis requiring efforts on the part of the MEG center, the patient¡¯s doctors, and the patient. Centers %U http://www.hindawi.com/journals/isrn.radiology/2013/529463/