全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lipoidal Soft Hybrid Biocarriers of Supramolecular Construction for Drug Delivery

DOI: 10.5402/2012/474830

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lipid-based innovations have achieved new heights during the last few years as an essential component of drug development. The current challenge of drug delivery is liberation of drug agents at the right time in a safe and reproducible manner to a specific target site. A number of novel drug delivery systems has emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery. Microparticulate lipoidal vesicular system represents a unique technology platform suitable for the oral and systemic administration of a wide variety of molecules with important therapeutic biological activities, including drugs, genes, and vaccine antigens. The success of liposomes as drug carriers has been reflected in a number of liposome-based formulations, which are commercially available or are currently undergoing clinical trials. Also, novel lipid carrier-mediated vesicular systems are originated. This paper has focused on the lipid-based supramolecular vesicular carriers that are used in various drug delivery and drug targeting systems. 1. Introduction The turn of century has witnessed a remarkable growth in drug discovery, development, and use. New drug delivery technologies are revolutionizing the development and creating R&D-focused pharmaceutical industries to suit the needs of the modern world. The scenario of pharmaceutical research is being steadily changed, by encouraging development of novel drug delivery of existing drug molecule instead of development of new chemical entities. The novel drug delivery approaches aim to develop a carrier system which can hold the molecule effectively and then navigate them towards the right destination without affecting the physiological conditions of the body. Vesicular system has achieved new heights during the last few years as an essential component of drug development. The phospholipid-mediated drug delivery has emerged as a powerful methodology for the treatment of various pathologies. The therapeutic index of traditional and novel drugs is enhanced via the increase of specificity due to targeting of drugs to a particular tissue, cell or intracellular compartment, the control over release kinetics, the protection of the active agent or a combination of the above [1–3]. From the last two decades, microparticulate lipoidal vesicular systems have been under extensive investigation as carriers for the improved delivery of a broad spectrum of agents, including chemotherapeutic agents, imaging agents, antigens, immunomodulators, chelating compounds, haemoglobin and cofactors, lipids, and

References

[1]  S. Abrol, A. Trehan, and O. P. Katare, “Comparative study of different silymarin formulations: formulation, characterisation and in vitro/in vivo evaluation,” Current Drug Delivery, vol. 2, no. 1, pp. 45–51, 2005.
[2]  S. Gupta, “Biocompatible microemulsion systems for drug encapsulation and delivery,” Current Science, vol. 101, no. 2, pp. 174–188, 2011.
[3]  S. K. Dubey, A. Pandey, R. Mishra, N. Kapoor, A. Tiwari, and K. Misra, “Site directed drug delivery by non-viral mode,” Indian Journal of Biotechnology, vol. 6, no. 2, pp. 159–174, 2007.
[4]  A. Chonn and P. R. Cullis, “Recent advances in liposomal drug-delivery systems,” Current Opinion in Biotechnology, vol. 6, no. 6, pp. 698–708, 1995.
[5]  B. Fadeel and D. Xue, “The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease,” Critical Reviews in Biochemistry and Molecular Biology, vol. 44, no. 5, pp. 264–277, 2009.
[6]  G. Fricker, T. Kromp, A. Wendel et al., “Phospholipids and lipid-based formulations in oral drug delivery,” Pharmaceutical Research, vol. 27, no. 8, pp. 1469–1486, 2010.
[7]  J. Agnihotri, S. Saraf, and A. Khale, “Targeting: new potential carriers for targeted drug delivery system,” International Journal of Pharmaceutical Sciences Review and Research, vol. 8, no. 2, pp. 117–123, 2011.
[8]  R. P. Singh, P. Singh, V. Mishra, D. Prabakaran, and S. P. Vyas, “Vesicular systems for non-invasive topical immunization: rationale and prospects,” Indian Journal of Pharmacology, vol. 34, no. 5, pp. 301–310, 2002.
[9]  P. N. Gupta, P. Singh, V. Mishra, S. Jain, P. K. Dubey, and S. P. Vyas, “Topical immunization: mechanistic insight and novel delivery systems,” Indian Journal of Biotechnology, vol. 3, no. 1, pp. 9–21, 2004.
[10]  S. Gupta, R. P. Singh, P. Lokwani, S. Yadav, and S. K. Gupta, “Vesicular system as targeted drug delivery system: an overview,” International Journal of Pharmacy and Technology, vol. 3, no. 2, pp. 987–1021, 2011.
[11]  T. Kato and J. E. Bara, “Supermolecuar liquid crystals,” in Structure and Bonding, vol. 128 of Liquid crystalline functional assemblies and their supramolecular structures, Springer, Berlin, Germany, 2008.
[12]  J. W. Steed, D. R. Turner, and K. J. Wallace, Core Concepts in Supramolecular Chemistry and Nanochemistry, John Wiley, New York, NY, USA, 2007.
[13]  K. Ariga and T. Kunitake, Supramolecular Chemistry-Fundamentals and Applications, Springer, Berlin, Germany, 2008.
[14]  A. D. Bangham, M. M. Standish, and J. C. Watkins, “Diffusion of univalent ions across the lamellae of swollen phospholipids,” Journal of Molecular Biology, vol. 13, no. 1, pp. 238–252, 1965.
[15]  M. García, T. Forbe, and E. Gonzalez, “Potential applications of nanotechnology in the agro-food sector,” Ciencia e Tecnologia de Alimentos, vol. 30, no. 3, pp. 573–581, 2010.
[16]  D. C. Johnson, M. Wittels, and P. G. Spear, “Binding to cells of virosomes containing herpes simplex virus type 1 glycoproteins and evidence for fusion,” Journal of Virology, vol. 52, no. 1, pp. 238–247, 1984.
[17]  A. Sharma, S. Jain, M. Modi, V. Vashisht, and H. Singh, “Recent advances in NDDS (Novel drug delivery systems) for delivery of Anti-HIV drugs,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 1, no. 3, pp. 78–88, 2010.
[18]  T. Benvegnu, G. Réthoré, M. Brard, W. Richter, and D. Plusquellec, “Archaeosomes based on novel synthetic tetraether-type lipids for the development of oral delivery systems,” Chemical Communications, no. 44, pp. 5536–5538, 2005.
[19]  A. Shukla, B. Singh, and O. P. Katare, “Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes,” British Journal of Pharmacology, vol. 164, pp. 820–827, 2011.
[20]  N. A. Ochekpe, P. O. Olorunfemi, and N. C. Ngwuluka, “Nanotechnology and drug delivery part 2: nanostructures for drug delivery,” Tropical Journal of Pharmaceutical Research, vol. 8, no. 3, pp. 275–287, 2009.
[21]  J. Y. Fang, “Nano- or submicron-sized liposomes as carriers for drug delivery,” Chang Gung Medical Journal, vol. 29, no. 4, pp. 358–362, 2006.
[22]  S. T. Prajapati, C. G. Patel, and C. N. Patel, “Transfersomes: a vesicular carrier system for transdermal drug delivery,” Asian Journal of Biochemical and Pharmaceutical Research, vol. 1, no. 2, pp. 507–524, 2011.
[23]  L. M. Negi, A. K. Garg, and M. Chauhan, “Ultradeformable vesicles: concept and execution,” Pharma Times, vol. 41, no. 9, pp. 11–14, 2009.
[24]  P. R. Kulkarni, J. D. Yadav, K. A. Vaidya, and P. P. Gandhi, “Transferosomes: an emerging tool for transdermal drug delivery,” International Journal of Pharmaceutical Sciences and Research, vol. 2, no. 4, pp. 735–741, 2011.
[25]  S. Duangjit, P. Opanasopit, T. Rojanarata, and T. Ngawhirunpat, “Characterization and invitro skin permeation of meloxicam-loaded liposomes versus transfersomes,” Journal of Drug Delivery, vol. 2011, Article ID 418316, 9 pages, 2011.
[26]  S. Pandey, M. Goyani, V. Devmurari, and J. Fakir, “Transferosomes: a novel approach for transdermal drug delivery,” Der Pharmacia Lettre, vol. 1, no. 2, pp. 143–150, 2009.
[27]  R. Patel, S. K. Singh, S. Singh, N. R. Sheth, and R. Gendle, “Development and characterization of curcumin loaded transfersome for transdermal delivery,” Journal of Pharmaceutical Sciences and Research, vol. 1, no. 4, pp. 71–80, 2009.
[28]  S. Saraf, G. Jeswani, C. D. Kaur, and S. Saraf, “Development of novel herbal cosmetic cream with curcuma longa extract loaded transfersomes for antiwrinkle effect,” African Journal of Pharmacy and Pharmacology, vol. 5, no. 8, pp. 1054–1062, 2011.
[29]  S. M. Gavali, S. S. Pacharane, K. R. Jadhav, and V. J. Kadam, “Clinical P transfersome: a new technique for transdermal drug delivery,” International Journal of Research in Pharmacy and Chemistry, vol. 1, no. 3, pp. 735–740, 2011.
[30]  V. Bhardwaj, V. Shukla, A. Singh, R. Malviya, and K. Sharma, “Transfersomes ultra flexible vesicles for transdermal delivery,” International Journal of Pharmaceutical Sciences and Research, vol. 1, no. 3, pp. 12–20, 2010.
[31]  A. Semalty, M. Semalty, D. Singh, and M. S. M. Rawat, “Development and physicochemical evaluation of pharmacosomes of diclofenac,” Acta Pharmaceutica, vol. 59, no. 3, pp. 335–344, 2009.
[32]  D. Kavitha, J. Naga Sowjanya, and S. Panaganti, “Pharmacosomes: an emerging vesicular system,” International Journal of Pharmaceutical Sciences Review and Research, vol. 5, no. 3, pp. 168–171, 2010.
[33]  A. Semalty, M. Semalty, D. Singh, and M. S. M. Rawat, “Development and characterization of aspirin-phospholipid complex for improved drug delivery,” International Journal of Pharmaceutical Sciences and Nanotechnology, vol. 3, no. 2, pp. 940–947, 2010.
[34]  P. Verma, “Transdermal penetration efficacy of ethosomal systems with and without penetration enhancer: a comparative study,” International Journal of Pharmaceutical Sciences and Research, vol. 2, no. 9, pp. 2472–2474, 2011.
[35]  R. Cortesi, R. Romagnoli, M. Drechsler et al., “Liposomes- and ethosomes-associated distamycins: a comparative study,” Journal of Liposome Research, vol. 20, no. 4, pp. 277–285, 2010.
[36]  R. He, D. X. Cui, and F. Gao, “Preparation of fluorescence ethosomes based on quantum dots and their skin scar penetration properties,” Materials Letters, vol. 63, no. 20, pp. 1662–1664, 2009.
[37]  D. Akiladevi and S. Basak, “Ethosomes—a noninvasive approach for transdermal drug delivery,” International Journal of Current Pharmaceutical Research, vol. 2, no. 4, pp. 1–4, 2010.
[38]  A. Sheer and M. Chauhan, “Ethosomes as vesicular carrier for enhanced transdermal delivery of ketoconazole—formulation and evaluation,” IJPI's Journal of Pharmaceutics and Cosmetology, vol. 1, no. 3, pp. 1–14, 2011.
[39]  M. K. Bhalaria, S. Naik, and A. N. Misra, “Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases,” Indian Journal of Experimental Biology, vol. 47, no. 5, pp. 368–375, 2009.
[40]  E. Esposito, E. Menegatti, and R. Cortesi, “Ethosomes and liposomes as topical vehicles for azelaic acid: a preformulation study,” Journal of Cosmetic Science, vol. 55, no. 3, pp. 253–264, 2004.
[41]  A. K. Garg, L. M. Negi, and M. Chauhan, “Gel containing ethosomal vesicles for transdermal delivery of aceclofenac,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 2, pp. 102–108, 2010.
[42]  M. R. Vijayakumar, A. H. Sathali, and K. Arun, “Formulation and evaluation of diclofenac potassium ethosomes,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 4, pp. 82–86, 2010.
[43]  J. Patel, R. Patel, K. Khambholja, and N. Patel, “An overview of phytosomes as an advanced herbal drug delivery system,” Asian Journal of Pharmaceutical Sciences, vol. 4, no. 6, pp. 363–371, 2009.
[44]  K. R. Vinod, S. Sandhya, J. Chandrashekar et al., “A review on genesis and characterization of phytosomes,” International Journal of Pharmaceutical Sciences Review and Research, vol. 4, no. 3, pp. 69–75, 2010.
[45]  V. S. Kumar and K. Asha, “Herbosome—a novel carrier for herbal drug delivery,” International Journal of Current Pharmaceutical Research, vol. 3, no. 3, pp. 36–41, 2011.
[46]  N. P. Jain, B. P. Gupta, N. Thakur, et al., “Phytosome: a novel drug delivery system for herbal medicine,” International Journal of Pharmaceutical Sciences and Drug Research, vol. 2, no. 4, pp. 224–228, 2010.
[47]  H. Ishikawa, Y. Shimoda, and K. Matsumoto, “Liposomal microcapsulation of enzymes by proliposome method with chitosan-coating,” Journal of the Faculty of Agriculture, Kyushu University, vol. 50, no. 1, pp. 141–149, 2005.
[48]  W. Rojanarat, N. Changsan, E. Tawithong, S. Pinsuwan, H. K. Chan, and T. Srichana, “Isoniazid proliposome powders for inhalation-preparation, characterization and cell culture studies,” International Journal of Molecular Sciences, vol. 12, no. 7, pp. 4414–4434, 2011.
[49]  N. A. Kshirsagar, “Drug delivery systems,” Indian Journal of Pharmacology, vol. 32, supplement 4, pp. S54–S61, 2000.
[50]  A. Ghosh, T. Ghosh, and S. Jain, “Silymarin-a review on the pharmacodynamics and bioavailability enhancement approaches,” Journal of Pharmaceutical Science and Technology, vol. 2, no. 10, pp. 348–355, 2010.
[51]  H. Ishikawa, Y. Shimoda, and K. Matsumoto, “Preparation of liposomal microcapsules by proliposome method with soybean lecithin,” Journal of the Faculty of Agriculture, vol. 49, no. 1, pp. 119–127, 2004.
[52]  V. Gupta, R. Agrawal, and P. Trivedi, “Reduction in cisplatin genotoxicity (micronucleus formation) in non target cells of mice by protransfersome gel formulation used for management of cutaneous squamous cell carcinoma,” Acta Pharmaceutica, vol. 61, no. 1, pp. 63–71, 2011.
[53]  R. Awasthi, G. T. Kulkarni, and V. K. Pawar, “Phytosomes: an approach to increase the bioavailability of plant extracts,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 3, no. 2, pp. 1–3, 2011.
[54]  P. Kidd and K. Head, “A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylcholine complex (siliphos),” Alternative Medicine Review, vol. 10, no. 3, pp. 193–203, 2005.
[55]  P. G. Sindhumol, M. Thomas, and P. S. Mohanachandran, “Phytosomes: a novel dosage form for enhancement of bioavailability of botanicals and neutraceuticals,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 4, pp. 10–14, 2010.
[56]  S. Khatry, Sirish, N. Shastri, and M. Sadanandam, “Novel drug delivery systems for antifungal therapy,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 4, pp. 6–9, 2010.
[57]  V. R. Sankar and Y. D. Reddy, “Nanocochleate—a new approach in lipid drug delivery,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 4, pp. 220–223, 2010.
[58]  V. Panwar, V. Mahajan, A. S. Panwar, G. N. Darwhekar, and D. K. Jain, “Nanocochleate: as drug delivery vehicle,” International Journal of Pharmacy and Biological Sciences, vol. 1, no. 1, pp. 31–38, 2011.
[59]  T. Ramasamy, U. Khandasamy, R. Hinabindhu, and K. Kona, “Nanocochleate—a new drug delivery system,” FABAD Journal of Pharmaceutical Sciences, vol. 34, pp. 91–101, 2009.
[60]  G. D. Sprott, C. J. Dicaire, K. Gurnani, L. A. Deschatelets, G. B. Patel, and L. Krishnan, “Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses,” Vaccine, vol. 22, no. 17-18, pp. 2154–2162, 2004.
[61]  K. Gurnani, J. Kennedy, S. Sad, G. D. Sprott, and L. Krishnan, “Phosphatidylserine receptor-mediated recognition of archaeosome adjuvant promotes endocytosis and MHC class I cross-presentation of the entrapped antigen by phagosome-to-cytosol transport and classical processing,” Journal of Immunology, vol. 173, no. 1, pp. 566–578, 2004.
[62]  M. A. Ansari, S. Zubair, A. Mahmood et al., “RD antigen based nanovaccine imparts long term protection by inducing memory response against experimental murine tuberculosis,” PLoS ONE, vol. 6, no. 8, Article ID e22889, 2011.
[63]  R. O. Gonzalez, L. H. Higa, R. A. Cutrullis et al., “Archaeosomes made of Halorubrum tebenquichense total polar lipids: a new source of adjuvancy,” BMC Biotechnology, vol. 9, article 71, 2009.
[64]  G. D. Sprott, J. P. C?té, and H. C. Jarrell, “Glycosidase-induced fusion of isoprenoid gentiobiosyl lipid membranes at acidic pH,” Glycobiology, vol. 19, no. 3, pp. 267–276, 2009.
[65]  G. D. Sprott, D. L. Tolson, and G. B. Patel, “Archaeosomes as novel antigen delivery systems,” FEMS Microbiology Letters, vol. 154, no. 1, pp. 17–22, 1997.
[66]  L. Krishnan, S. Sad, G. B. Patel, and G. D. Sprott, “The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo,” Journal of Immunology, vol. 166, no. 3, pp. 1885–1893, 2001.
[67]  M. J. Morilla, D. M. Gomez, P. Cabral et al., “M cells prefer archaeosomes: an in vitro/in vivo snapshot upon oral gavage in rats,” Current Drug Delivery, vol. 8, no. 3, pp. 320–329, 2011.
[68]  L. Krishnan, L. Deschatelets, F. C. Stark, K. Gurnani, and G. D. Sprott, “Archaeosome adjuvant overcomes tolerance to tumor-associated melanoma antigens inducing protective CD8+ T cell responses,” Clinical and Developmental Immunology, vol. 2010, Article ID 578432, 2010.
[69]  L. Krishnan, S. Sad, G. B. Patel, and G. D. Sprott, “Archaeosomes induce enhanced cytotoxic T lymphocyte responses to entrapped soluble protein in the absence of interleukin 12 and protect against tumor challenge,” Cancer Research, vol. 63, no. 10, pp. 2526–2534, 2003.
[70]  L. Krishnan, C. J. Dicaire, G. B. Patel, and G. D. Sprott, “Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum,” Infection and Immunity, vol. 68, no. 1, pp. 54–63, 2000.
[71]  J. Barbeau, S. C. Marion, P. Auvray, and T. Benvegnu, “Preparation and characterization of stealth archaeosomes based on a synthetic pegylated archaeal tetraether lipid,” Journal of Drug Delivery, vol. 2011, Article ID 396068, 11 pages, 2011.
[72]  G. D. Sprott, S. Sad, L. P. Fleming, C. J. Dicaire, G. B. Patel, and L. Krishnan, “Archaeosomes varying in lipid composition differ in receptor-mediated endocytosis and differentially adjuvant immune responses to entrapped antigen,” Archaea, vol. 1, no. 3, pp. 151–164, 2003.
[73]  D. G. Sprott, C. J. Dicaire, J. P. C?té, and D. M. Whitfield, “Adjuvant potential of archaeal synthetic glycolipid mimetics critically depends on the glyco head group structure,” Glycobiology, vol. 18, no. 7, pp. 559–565, 2008.
[74]  G. Réthoré, T. Montier, T. Le Gall et al., “Archaeosomes based on synthetic tetraether-like lipids as novel versatile gene delivery systems,” Chemical Communications, no. 20, pp. 2054–2056, 2007.
[75]  S. Saraf, S. Paliwal, and S. Sara, “Sphingosomes a novel appoach to vesicular drug delivery,” International Journal of Current Scientific Research, vol. 1, no. 2, pp. 63–68, 2011.
[76]  J. D. Almeida, D. C. Edwards, C. M. Brand, and T. D. Heath, “Formation of Virosomes from Influenza Subunits and Liposomes,” The Lancet, vol. 306, no. 7941, pp. 899–901, 1975.
[77]  A. Homhuan and S. Prakongpan, “Use of a dialyzable short-chain phospholipid for efficient preparation of virosome vaccines against newcastle disease,” Thai Journal of Pharmaceutical Sciences, vol. 31, pp. 63–73, 2007.
[78]  L. Bungener, A. Huckriede, J. Wilschut, and T. Daemen, “Delivery of protein antigens to the immune system by fusion-active virosomes: a comparison with liposomes and ISCOMs,” Bioscience Reports, vol. 22, no. 2, pp. 323–338, 2002.
[79]  M. Amacker, O. Engler, A. R. Kammer et al., “Peptide-loaded chimeric influenza virosomes for efficient in vivo induction of cytotoxic T cells,” International Immunology, vol. 17, no. 6, pp. 695–704, 2005.
[80]  M. Bomsel, D. Tudor, A. S. Drillet et al., “Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges,” Immunity, vol. 34, no. 2, pp. 269–280, 2011.
[81]  A. J. De Siervo, “Alterations in the phospholipid composition of Escherichia coli B during growth at different temperatures,” Journal of Bacteriology, vol. 100, no. 3, pp. 1342–1349, 1969.
[82]  L. O. Ingram, “Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives,” Applied and Environmental Microbiology, vol. 33, no. 5, pp. 1233–1236, 1977.
[83]  J. E. Cronan, “Phospholipid alterations during growth of Escherichia coli,” Journal of Bacteriology, vol. 95, no. 6, pp. 2054–2061, 1968.
[84]  T. M. Buttke and L. O'Neal Ingram, “Mechanism of ethanol-induced changes in lipid composition of Escherichia coli: inhibition of saturated fatty acid synthesis in vivo,” Biochemistry, vol. 17, no. 4, pp. 637–644, 1978.
[85]  N. Ahmad, F. Deeba, S. M. Faisal et al., “Role of fusogenic non-pc liposomes in elicitation of protective immune response against experimental murine salmonellosis,” Biochimie, vol. 88, no. 10, pp. 1391–1400, 2006.
[86]  H. Singha, A. I. Mallick, C. Jana et al., “Escheriosomes entrapped DNA vaccine co-expressing Cu-Zn superoxide dismutase and IL-18 confers protection against Brucella abortus,” Microbes and Infection, vol. 10, no. 10-11, pp. 1089–1096, 2008.
[87]  F. M. Syed, M. A. Khan, T. H. Nasti, N. Ahmad, and O. Mohammad, “Antigen entrapped in the escheriosomes leads to the generation of CD4+ helper and CD8+ cytotoxic T cell response,” Vaccine, vol. 21, no. 19-20, pp. 2383–2393, 2003.
[88]  A. Chauhan, Z. Swaleha, N. Ahmad et al., “Escheriosome mediated cytosolic delivery of candida albicans cytosolic proteins induces enhanced cytotoxic T lymphocyte response and protective immunity,” Vaccine, vol. 29, no. 33, pp. 5424–5433, 2011.
[89]  A. I. Mallick, H. Singha, S. Khan et al., “Escheriosome-mediated delivery of recombinant ribosomal L7/L12 protein confers protection against murine brucellosis,” Vaccine, vol. 25, no. 46, pp. 7873–7884, 2007.
[90]  S. K. Sharma, A. Dube, A. Nadeem et al., “Non PC liposome entrapped promastigote antigens elicit parasite specific CD8+ and CD4+ T-cell immune response and protect hamsters against visceral leishmaniasis,” Vaccine, vol. 24, no. 11, pp. 1800–1810, 2006.
[91]  S. M. Faisal, W. Yan, S. P. McDonough, C. F. Chang, M. J. Pan, and Y. F. Chang, “Leptosome-entrapped leptospiral antigens conferred significant higher levels of protection than those entrapped with PC-liposomes in a hamster model,” Vaccine, vol. 27, no. 47, pp. 6537–6545, 2009.
[92]  F. Deeba, H. N. Tahseen, K. S. Sharad et al., “Phospholipid diversity: correlation with membrane-membrane fusion events,” Biochimica et Biophysica Acta, vol. 1669, no. 2, pp. 170–181, 2005.
[93]  H. N. Shivakumar, P. B. Patel, B. G. Desai, P. Ashok, and S. Arulmozhi, “Design and statistical optimization of glipizide loaded lipospheres using response surface methodology,” Acta Pharmaceutica, vol. 57, no. 3, pp. 269–285, 2007.
[94]  E. V. Hersh, M. Maniar, M. Green, and S. A. Cooper, “Anesthetic activity of the lipospheres bupivacaine delivery system in the rat,” Anesthesia Progress, vol. 39, no. 6, pp. 197–200, 1992.
[95]  L. Veerappan and S. Reddy, “Formulation development and evaluation of flurbiprofen lipospheres,” International Journal for the Advancement of Science & Arts, vol. 1, no. 1, pp. 90–95, 2010.
[96]  M. Nasr, S. Mansour, N. D. Mortada, and A. A. El Shamy, “Lipospheres as carriers for topical delivery of aceclofenac: preparation, characterization and in vivo evaluation,” AAPS PharmSciTech, vol. 9, no. 1, pp. 154–162, 2008.
[97]  M. R. Singh, D. Singh, and S. Saraf, “Influence of selected formulation variables on the preparation of peptide loaded lipospheres,” Trends in Medical Research, vol. 6, no. 2, pp. 101–115, 2011.
[98]  R. Cavalli, S. Morel, M. R. Gasco, P. Chetoni, and M. F. Saettone, “Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair,” International Journal of Pharmaceutics, vol. 117, no. 2, pp. 243–246, 1995.
[99]  D. B. Masters and A. J. Domb, “Liposphere local anesthetic timed-release for perineural site application,” Pharmaceutical Research, vol. 15, no. 7, pp. 1038–1045, 1998.
[100]  A. J. Khopade, C. Shelly, N. K. Pandit, and U. V. Banakar, “Liposphere based lipoprotein-mimetic delivery system for 6-mercaptopurine,” Journal of Biomaterials Applications, vol. 14, no. 4, pp. 389–398, 2000.
[101]  M. Umrethia, P. K. Ghosh, R. Majithya, and R. S. R. Murthy, “6-mercaptopurine (6-MP) entrapped stealth liposomes for improvement of leukemic treatment without hepatotoxicity and nephrotoxicity,” Cancer Investigation, vol. 25, no. 2, pp. 117–123, 2007.
[102]  A. A. Attama, C. E. Okafor, P. F. Builders, and O. Okorie, “Formulation and in vitro evaluation of a PEGylated microscopic lipospheres delivery system for ceftriaxone sodium,” Drug Delivery, vol. 16, no. 8, pp. 448–457, 2009.
[103]  P. Del Pino, A. Munoz-Javier, D. Vlaskou, P. Rivera Gil, C. Plank, and W. J. Parak, “Gene silencing mediated by magnetic lipospheres tagged with small interfering RNA,” Nano Letters, vol. 10, no. 10, pp. 3914–3921, 2010.
[104]  M. R. Singh, D. Singh, and S. Saraf, “Development and in vitro evaluation of polar lipid based lipospheres for oral delivery of peptide drugs,” International Journal of Drug Delivery, vol. 3, no. 1, pp. 15–26, 2011.
[105]  J. M. Gebicki and M. Hicks, “Preparation and properties of vesicles enclosed by fatty acid membranes,” Chemistry and Physics of Lipids, vol. 16, no. 2, pp. 142–160, 1976.
[106]  J. M. Gebicki and M. Hicks, “Ufasomes are stable particles surrounded by unsaturated fatty acid membranes,” Nature, vol. 243, no. 5404, pp. 232–234, 1973.
[107]  D. M. Patel, R. H. Jani, and C. N. Patel, “Ufasomes: a vesicular drug delivery,” Systematic Reviews in Pharmacy, vol. 2, no. 2, pp. 72–78, 2011.
[108]  M. Hicks and J. M. Gebicki, “Microscopic studies of fatty acid vesicles,” Chemistry and Physics of Lipids, vol. 20, no. 3, pp. 243–252, 1977.
[109]  M. Murakami, H. Yoshikawa, K. Takada, and S. Muranishi, “Effect of oleic acid vesicles on intestinal absorption of carboxyfluorescein in rats,” Pharmaceutical Research, vol. 3, no. 1, pp. 35–40, 1986.
[110]  H. Fukui, M. Murakami, K. Takada, and S. Muranishi, “Combinative promotion effect of azone and fusogenic fatty acid on the large intestinal absorption in rat,” International Journal of Pharmaceutics, vol. 31, no. 3, pp. 239–246, 1986.
[111]  P. V. Naik and S. G. Dixit, “Ufasomes as plausible carriers for horizontal gene transfer,” Journal of Dispersion Science and Technology, vol. 29, no. 6, pp. 804–808, 2008.
[112]  G. Blume and G. Cevc, “Drug-carrier and stability properties of the long-lived lipid vesicles, cryptosomes, in vitro and in vivo,” Journal of Liposome Research, vol. 2, no. 3, pp. 355–368, 1992.
[113]  G. Blume and G. Cevc, “Molecular mechanism of the lipid vesicle longevity in vivo,” Biochimica et Biophysica Acta, vol. 1146, no. 2, pp. 157–168, 1993.
[114]  M. L. Immordino, F. Dosio, and L. Cattel, “Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential,” International Journal of Nanomedicine, vol. 1, no. 3, pp. 297–315, 2006.
[115]  A. A. Gabizon, “Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet,” Clinical Cancer Research, vol. 7, no. 2, pp. 223–225, 2001.
[116]  T. M. Allen, T. Mehra, C. Hansen, and Y. C. Chin, “Stealth liposomes: an improved sustained release system for 1-beta-D- arabinofuranosylcytosine,” Cancer Research, vol. 52, no. 9, pp. 2431–2439, 1992.
[117]  S. P. Vyas, R. Subhedar, and S. Jain, “Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver,” Journal of Pharmacy and Pharmacology, vol. 58, no. 3, pp. 321–326, 2006.
[118]  S. Gupta, A. Dube, and S. P. Vyas, “Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis,” Journal of Drug Targeting, vol. 15, no. 6, pp. 437–444, 2007.
[119]  A. Pal, S. Gupta, A. Jaiswal, A. Dube, and S. P. Vyas, “Development and evaluation of tripalmitin emulsomes for the treatment of experimental visceral leishmaniasis,” Journal of Liposome Research, vol. 22, no. 1, pp. 62–71, 2012.
[120]  S. Gupta and S. P. Vyas, “Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting,” Journal of Drug Targeting, vol. 15, no. 3, pp. 206–217, 2007.
[121]  G. H. Lowell, R. W. Kaminski, T. C. VanCott et al., “Proteosomes, emulsomes, and cholera toxin B improve nasal immunogenicity of human immunodeficiency virus gp160 in mice: induction of serum, intestinal, vaginal, and lung IgA and IgG,” Journal of Infectious Diseases, vol. 175, no. 2, pp. 292–301, 1997.
[122]  F. Nacka, M. Cansell, J. P. Gouygou, C. Gerbeaud, P. Méléard, and B. Entressangles, “Physical and chemical stability of marine lipid-based liposomes under acid conditions,” Colloids and Surfaces B, vol. 20, no. 3, pp. 257–266, 2001.
[123]  M. S. Cansell, N. Moussaoui, and M. Mancini, “Prostaglandin E2 and interleukin-8 production in human epidermal keratinocytes exposed to marine lipid-based liposomes,” International Journal of Pharmaceutics, vol. 343, no. 1-2, pp. 277–280, 2007.
[124]  N. Moussaoui, M. Cansell, and A. Denizot, “Marinosomes, marine lipid-based liposomes: physical characterization and potential application in cosmetics,” International Journal of Pharmaceutics, vol. 242, no. 1-2, pp. 361–365, 2002.
[125]  M. Cansell, N. Moussaoui, and C. Lefrancois, “Stability of marine lipid based-liposomes under acid conditions. Influence of xanthan gum,” Journal of Liposome Research, vol. 11, no. 2-3, pp. 229–242, 2001.
[126]  M. Cansell, F. Nacka, and N. Combe, “Marine lipid-based liposomes increase in vivo FA bioavailability,” Lipids, vol. 38, no. 5, pp. 551–559, 2003.
[127]  F. Nacka, M. Cansell, and B. Entressangles, “In vitro behavior of marine lipid-based liposomes. Influence of pH, temperature, bile salts, and phospholipase A2,” Lipids, vol. 36, no. 1, pp. 35–42, 2001.
[128]  V. B. Patravale and S. D. Mandawgade, “Novel cosmetic delivery systems: an application update,” International Journal of Cosmetic Science, vol. 30, no. 1, pp. 19–33, 2008.
[129]  M. M. Gaspar, M. B. Martins, M. L. Corvo, and M. E. M. Cruz, “Design and characterization of enzymosomes with surface-exposed superoxide dismutase,” Biochimica et Biophysica Acta, vol. 1609, no. 2, pp. 211–217, 2003.
[130]  M. M. Gaspar, O. C. Boerman, P. Laverman, M. L. Corvo, G. Storm, and M. E. M. Cruz, “Enzymosomes with surface-exposed superoxide dismutase: in vivo behaviour and therapeutic activity in a model of adjuvant arthritis,” Journal of Controlled Release, vol. 117, no. 2, pp. 186–195, 2007.
[131]  M. H. Vingerhoeds, H. J. Haisma, S. O. Belliot, R. H. P. Smit, D. J. A. Crommelin, and G. Storm, “Immunoliposomes as enzyme-carriers (immuno-enzymosomes) for antibody-directed enzyme prodrug therapy (ADEPT): optimization of prodrug activating capacity,” Pharmaceutical Research, vol. 13, no. 4, pp. 604–610, 1996.
[132]  M. J. Fonseca, H. J. Haisma, S. Klaassen, M. H. Vingerhoeds, and G. Storm, “Design of immuno-enzymosomes with maximum enzyme targeting capability: effect of the enzyme density on the enzyme targeting capability and cell binding properties,” Biochimica et Biophysica Acta, vol. 1419, no. 2, pp. 272–282, 1999.
[133]  R. Podgornik, “Supporting membrane shape instability in the presence of strongly adsorbed flexible polymers,” Langmuir, vol. 13, no. 18, pp. 4791–4794, 1997.
[134]  A. Rodríguez-Pulido, E. Aicart, O. Llorca, and E. Junquera, “Compaction process of calf thymus DNA by mixed cationic-zwitterionic liposomes: a physicochemical study,” Journal of Physical Chemistry B, vol. 112, no. 7, pp. 2187–2197, 2008.
[135]  D. D. Lasic, “Liposomes in gene delivery,” Biophysical Journal, vol. 74, pp. 2138–2139, 1998.
[136]  J. Cuppoletti, E. Mayhew, C. R. Zobel, and C. Y. Jung, “Erythrosomes: large proteoliposomes derived from crosslinked human erythrocyte cytoskeletons and exogenous lipid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 5, pp. 2786–2790, 1981.
[137]  V. Mishra, S. Mahor, A. Rawat et al., “Development of novel fusogenic vesosomes for transcutaneous immunization,” Vaccine, vol. 24, no. 27-28, pp. 5559–5570, 2006.
[138]  P. T. Spicer, “Progress in liquid crystalline dispersions: cubosomes,” Current Opinion in Colloid and Interface Science, vol. 10, no. 5-6, pp. 274–279, 2005.
[139]  R. Hirlekar, S. Jain, M. Patel, H. Garse, and V. Kadam, “Hexosomes: a novel drug delivery system,” Current Drug Delivery, vol. 7, no. 1, pp. 28–35, 2010.
[140]  A. Shahiwala and A. Misra, “Studies in topical application of niosomally entrapped nimesulide,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 3, pp. 220–225, 2002.
[141]  S. Bhaskaran and P. K. Lakshmi, “Comparative evaluation of niosome formulations prepared by different techniques,” Acta Pharmaceutica Sciencia, vol. 51, no. 1, pp. 27–32, 2009.
[142]  R. K. Keservani, A. K. Sharma, M. Ayaz, and R. K. Kesharwani, “Novel drug delivery system for the vesicular delivery of drug by the niosomes,” International Journal of Research in Controlled Release, vol. 1, no. 1, pp. 1–8, 2011.
[143]  V. S. Jatav, S. K. Singh, P. Khatri, A. K. Sharma, and R. Singh, “Formulation and in-vitro evaluation of rifampicin-loaded niosomes,” Journal of Chemical and Pharmaceutical Research, vol. 3, no. 2, pp. 199–203, 2011.
[144]  S. Paul, R. Mondol, S. Ranjit, and S. Maiti, “Anti-glaucomatic niosomal system: recent trend in ocular drug delivery research,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 2, pp. 15–18, 2010.
[145]  J. Vyas, P. Vyas, and K. Sawant, “Formulation and evaluation of topical niosomal gel of erythromycin,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 3, no. 1, pp. 123–126, 2011.
[146]  S. K. Sharma, M. Chauhan, and A. K. Narayanapillay, “Span-60 niosomal oral suspension of fluconazole: formulation and in vitro evaluation,” Journal of Pharmaceutical Research and Health Care, vol. 1, no. 2, pp. 142–156, 2009.
[147]  A. A. H. Sathali and G. Rajalakshmi, “Evaluation of transdermal targeted niosomal drug delivery of terbinafine hydrochloride,” International Journal of PharmTech Research, vol. 2, no. 3, pp. 2081–2089, 2010.
[148]  M. H. Dehghan and M. A. Hussain, “Development and evaluation of niosomal delivery system for aceclofenac,” International Journal of Pharmacy & Technology, vol. 2, no. 4, pp. 1028–1045, 2010.
[149]  J. R. Walve, B. R. Rane, N. A. Gujrathi, S. R. Bakaliwal, and S. P. Pawar, “Proniosomes: a surrogated carrier for improved transdermal drug delivery system,” International Journal of Research in Ayurveda and Pharmacy, vol. 2, no. 3, pp. 743–750, 2011.
[150]  M. I. Alam, S. Baboota, R. Kohli, J. Ali, and A. Ahuja, “Pharmacodynamic evaluation of proniosomal transdermal therapeutic gel containing celecoxib,” ScienceAsia, vol. 36, no. 4, pp. 305–311, 2010.
[151]  T. Sudhamani, N. Priyadarisini, and M. Radhakrishnan, “Proniosomes—a promising drug carriers,” International Journal of PharmTech Research, vol. 2, no. 2, pp. 1446–1454, 2010.
[152]  A. Gupta, S. K. Prajapati, M. Balamurugan, M. Singh, and D. Bhatia, “Design and development of a proniosomal transdermal drug delivery system for captopril,” Tropical Journal of Pharmaceutical Research, vol. 6, no. 2, pp. 687–693, 2007.
[153]  V. Sankar, K. Ruckmani, S. Durga, and S. Jailani, “Proniosomes as drug carriers,” Pakistan Journal of Pharmaceutical Sciences, vol. 23, no. 1, pp. 103–107, 2010.
[154]  A. I. Blazek-Welsh and D. G. Rhodes, “Maltodextrin-based proniosomes,” AAPS PharmSci, vol. 3, no. 1, 8 pages, 2001.
[155]  I. A. Alsarra, A. A. Bosela, S. M. Ahmed, and G. M. Mahrous, “Proniosomes as a drug carrier for transdermal delivery of ketorolac,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 59, no. 3, pp. 485–490, 2005.
[156]  C. Goyal, M. Ahuja, and S. K. Sharma, “Preparation and evaluation of anti-inflammatory activity of gugulipid-loaded proniosomal gel,” Acta poloniae pharmaceutica, vol. 68, no. 1, pp. 147–150, 2011.
[157]  A. Chandra and P. K. Sharma, “Proniosome based drug delivery system of piroxicam,” African Journal of Pharmacy and Pharmacology, vol. 2, no. 9, pp. 184–190, 2008.
[158]  J. F. S. Mann, V. A. Ferro, A. B. Mullen et al., “Optimisation of a lipid based oral delivery system containing A/Panama influenza haemagglutinin,” Vaccine, vol. 22, no. 19, pp. 2425–2429, 2004.
[159]  D. Arora, B. Khurana, M. S. Kumar, and S. P. Vyas, “Oral immunization against hepatitis B virus using mannosylated bilosomes,” International Journal of Recent Advances in Pharmaceutical Research, vol. 1, pp. 45–51, 2011.
[160]  A. Shukla, K. Khatri, P. N. Gupta, A. K. Goyal, A. Mehta, and S. P. Vyas, “Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes),” Journal of Pharmacy and Pharmaceutical Sciences, vol. 11, no. 1, pp. 59–66, 2008.
[161]  K. Moribe, W. Limwikrant, K. Higashi, and K. Yamamoto, “Drug nanoparticle formulation using ascorbic acid derivatives,” Journal of Drug Delivery, vol. 2011, Article ID 138929, 9 pages, 2011.
[162]  I. P. Kaur, M. Kapila, and R. Agrawal, “Role of novel delivery systems in developing topical antioxidants as therapeutics to combat photoageing,” Ageing Research Reviews, vol. 6, no. 4, pp. 271–288, 2007.
[163]  D. Gopinath, D. Ravi, B. R. Rao, S. S. Apte, D. Renuka, and D. Rambhau, “Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications,” International Journal of Pharmaceutics, vol. 271, no. 1-2, pp. 95–113, 2004.
[164]  M. S. Umashankar, R. K. Sachdeva, and M. Gulati, “Aquasomes: a promising carrier for peptides and protein delivery,” Nanomedicine, vol. 6, no. 3, pp. 419–426, 2010.
[165]  Y. Lee, J. B. Chang, H. K. Kim, and T. G. Park, “Stability studies of biodegradable polymersomes prepared by emulsion solvent evaporation method,” Macromolecular Research, vol. 14, no. 3, pp. 359–364, 2006.
[166]  S. Saraf, R. Rathi, C. D. Kaur, and S. Saraf, “Colloidosomes an advanced vesicular system in drug delivery,” Asian Journal of Scientific Research, vol. 4, no. 1, pp. 1–15, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133